Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The structure and perception of budgerigar (Melopsittacus undulatus) warble songs

    Thumbnail
    View/Open
    Tu_umd_0117E_11018.pdf (23.14Mb)
    No. of downloads: 518

    Date
    2009
    Author
    Tu, Hsiao-Wei
    Advisor
    Dooling, Robert J
    Metadata
    Show full item record
    Abstract
    The warble song of male budgerigars (<italic>Melopsittacus undulatus</italic>) is an extraordinarily complex, multi-syllabic, learned vocalization that is produced continuously in streams lasting from a few seconds to a few minutes without obvious repetition of particular patterns. As a follow-up of the warble analysis of Farabaugh et al. (1992), an automatic categorization program based on neural networks was developed and used to efficiently and reliably classify more than 25,000 warble elements from 4 budgerigars. The relative proportion of the resultant seven basic acoustic groups and one compound group is similar across individuals. Budgerigars showed higher discriminability of warble elements drawn from different acoustic categories and lower discriminability of warble elements drawn from the same category psychophysically, suggesting that they form seven perceptual categories corresponding to those established acoustically. Budgerigars also perceive individual voice characteristics in addition to the acoustic measures delineating categories. Acoustic analyses of long sequences of natural warble revealed that the elements were not randomly arranged and that warble has at least a 5th-order Markovian structure. Perceptual experiments provided convergent evidence that budgerigars are able to master a novel sequence between 4 and 7 elements in length. Through gradual training with chunking (about 5 elements), birds are able to master sequences up to 50 elements. The ability of budgerigars to detect inserted targets taken in a long, running background of natural warble sequences appears to be species-specific and related to the acoustic structure of warble sounds.
    URI
    http://hdl.handle.net/1903/10031
    Collections
    • Psychology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility