School of Public Health

Permanent URI for this communityhttp://hdl.handle.net/1903/1633

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins
    (MDPI, 2021-04-28) Turner, Paul C.; Snyder, Jessica A.
    Mycotoxins are toxic secondary fungal metabolites that frequently contaminate cereal crops globally, presenting exposure hazards to humans and livestock in many settings. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates for epidemiological studies, making validated exposure biomarkers better tools for informing epidemiological investigations. While biomarkers of exposure have served important roles for understanding the public health impact of mycotoxins such as aflatoxins (AF), the science of biomarkers must continue advancing to allow for better understanding of mycotoxins’ roles in the etiology of disease and the effectiveness of mitigation strategies. This review will discuss mycotoxin biomarker development approaches over several decades for four toxins of significant public health concerns, AFs, fumonisins (FB), deoxynivalenol (DON), and ochratoxin A (OTA). This review will also highlight some knowledge gaps, key needs and potential pitfalls in mycotoxin biomarker interpretation.
  • Thumbnail Image
    Item
    Racial and Sex Differences between Urinary Phthalates and Metabolic Syndrome among U.S. Adults: NHANES 2005–2014
    (MDPI, 2021-06-26) Ghosh, Rajrupa; Haque, Mefruz; Turner, Paul C.; Cruz-Cano, Raul; Dallal, Cher M.
    Phthalates, plasticizers ubiquitous in household and personal care products, have been associated with metabolic disturbances. Despite the noted racial differences in phthalate exposure and the prevalence of metabolic syndrome (MetS), it remains unclear whether associations between phthalate metabolites and MetS vary by race and sex. A cross-sectional analysis was conducted among 10,017 adults from the National Health and Nutritional Examination Survey (2005–2014). Prevalence odds ratios (POR) and 95% confidence intervals (CIs) were estimated for the association between 11 urinary phthalate metabolites and MetS using weighted sex and race stratified multivariable logistic regression. Higher MCOP levels were significantly associated with increased odds of MetS among women but not men, and only remained significant among White women (POR Q4 vs. Q1 = 1.68, 95% CI: 1.24, 2.29; p-trend = 0.001). Similarly, the inverse association observed with MEHP among women, persisted among White women only (POR Q4 vs. Q1 = 0.53, 95% CI: 0.35, 0.80; p-trend = 0.003). However, ΣDEHP metabolites were associated with increased odds of MetS only among men, and this finding was limited to White men (POR Q4 vs. Q1 = 1.54, 95% CI: 1.01, 2.35; p-trend = 0.06). Among Black men, an inverse association was observed with higher MEP levels (POR Q4 vs. Q1 = 0.43, 95% CI: 0.24, 0.77; p-trend = 0.01). The findings suggest differential associations between phthalate metabolites and MetS by sex and race/ethnicity.
  • Thumbnail Image
    Item
    Racial and Sex Differences between Urinary Phthalates and Metabolic Syndrome among U.S. Adults: NHANES 2005–2014
    (MDPI, 2021-06-26) Ghosh, Rajrupa; Haque, Mefruz; Turner, Paul C.; Cruz-Cano, Raul; Dallal, Cher M.
    Phthalates, plasticizers ubiquitous in household and personal care products, have been associated with metabolic disturbances. Despite the noted racial differences in phthalate exposure and the prevalence of metabolic syndrome (MetS), it remains unclear whether associations between phthalate metabolites and MetS vary by race and sex. A cross-sectional analysis was conducted among 10,017 adults from the National Health and Nutritional Examination Survey (2005–2014). Prevalence odds ratios (POR) and 95% confidence intervals (CIs) were estimated for the association between 11 urinary phthalate metabolites and MetS using weighted sex and race stratified multivariable logistic regression. Higher MCOP levels were significantly associated with increased odds of MetS among women but not men, and only remained significant among White women (POR Q4 vs. Q1 = 1.68, 95% CI: 1.24, 2.29; p-trend = 0.001). Similarly, the inverse association observed with MEHP among women, persisted among White women only (POR Q4 vs. Q1 = 0.53, 95% CI: 0.35, 0.80; p-trend = 0.003). However, SDEHP metabolites were associated with increased odds of MetS only among men, and this finding was limited to White men (POR Q4 vs. Q1 = 1.54, 95% CI: 1.01, 2.35; p-trend = 0.06). Among Black men, an inverse association was observed with higher MEP levels (POR Q4 vs. Q1 = 0.43, 95% CI: 0.24, 0.77; p-trend = 0.01). The findings suggest differential associations between phthalate metabolites and MetS by sex and race/ethnicity.
  • Thumbnail Image
    Item
    Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015
    (Springer Nature, 2019-01-11) Craddock, Hillary A.; Huang, Dina; Turner, Paul C.; Quirós-Alcalá, Lesliam; Payne-Sturges, Devon C.
    Neonicotinoids are a class of systemic insecticides widely used on food crops globally. These pesticides may be found in “off-target” food items and persist in the environment. Despite the potential for extensive human exposure, there are limited studies regarding the prevalence of neonicotinoid residues in foods sold and consumed in the United States. Residue data for seven neonicotinoid pesticides collected between 1999 and 2015 by the US Department of Agriculture’s Pesticide Data Program (PDP) were collated and summarized by year across various food commodities, including fruit, vegetable, meat, dairy, grain, honey, and baby food, as well as water to qualitatively describe and examine trends in contamination frequency and residue concentrations. The highest detection frequencies (DFs) for neonicotinoids by year on all commodities were generally below 20%. Average DFs over the entire study period, 1999–2015, for domestic and imported commodities were similar at 4.5%. For all the samples (both domestic and imported) imidacloprid was the neonicotinoid with the highest overall detection frequency at 12.0%. However, higher DFs were observed for specific food commodity-neonicotinoid combinations such as: cherries (45.9%), apples (29.5%), pears (24.1%) and strawberries (21.3%) for acetamiprid; and cauliflower (57.5%), celery (20.9%), cherries (26.3%), cilantro (30.6%), grapes (28.9%), collard greens (24.9%), kale (31.4%), lettuce (45.6%), potatoes (31.2%) and spinach (38.7%) for imidacloprid. Neonicotinoids were also detected in organic commodities, (DF < 6%). Individual commodities with at least 5% of samples testing positive for two or more neonicotinoids included apples, celery, and cherries. Generally, neonicotinoid residues on food commodities did not exceed US Environmental Protection Agency tolerance levels. Increases in detection trends for both finished and untreated water samples for imidacloprid were observed from 2004 to 2011. Analysis of PDP data indicates that low levels of neonicotinoids are present in commonly-consumed fruits and vegetables sold in the US. Trends in detection frequencies suggest an increase in use of acetamiprid, clothianidin and thiamethoxam as replacements for imidacloprid. Given these findings, more extensive surveillance of the food and water supply is warranted, as well as biomonitoring studies and assessment of cumulative daily intake in high risk groups, including pregnant women and infants.