School of Public Health
Permanent URI for this communityhttp://hdl.handle.net/1903/1633
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.
Browse
8 results
Search Results
Item Occupational Exposures Among Hair and Nail Salon Workers: a Scoping Review(Springer, 2019) Quiros-Alcala, Lesliam; Pollack, Anna Z.; Tchangalova, Nedelina; DeSantiago, Melissa; Kavi, Lucy K. A.PURPOSE OF REVIEW: To review the literature published from 2014 to 2019 on hair and nail salon workers concerning exposure assessment, reproductive and respiratory endpoints, and endocrine disruption, in relation to workplace exposures. RECENT FINDINGS: We identified 29 relevant peer-reviewed publications. Overall, there were insufficient studies to determine whether working in these settings is associated with reproductive health endpoints, although prior studies suggest that reproductive effects are of concern. There is consistent evidence that working in hair and nail salons may increase the risk of respiratory effects. Also, despite the fact that many hair and nail care products contain endocrine disrupting compounds, no recent studies have evaluated endocrine-related endpoints. Moreover, few studies have evaluated chemical exposures in these settings and biomonitoring studies are sparse. SUMMARY: Improved exposure assessment of chemical hazards in hair and nail salons is necessary to properly characterize occupational exposures and assess their potential health risks. Further studies on endpoints related to endocrine disruption and reproductive health outcomes among hair and nail salon workers are needed. Improved exposure and epidemiologic studies will help inform chemical exposure mitigation efforts in a vulnerable occupational population, as well as policies related to workplace and consumer product safetyItem Pesticides in house dust from urban and farmworker households in California: an observational measurement study.(2011-03) Quiros-Alcala, Lesliam; Bradman, Asa; Nishioka, Marcia; Harnly, Martha; Hubbard, Alan; McKone, Thomas E.; Ferber, Jeannette; Eskenazi, BrendaBACKGROUND: Studies report that residential use of pesticides in low-income homes is common because of poor housing conditions and pest infestations; however, exposure data on contemporary-use pesticides in low-income households is limited. We conducted a study in low-income homes from urban and agricultural communities to: characterize and compare house dust levels of agricultural and residential-use pesticides; evaluate the correlation of pesticide concentrations in samples collected several days apart; examine whether concentrations of pesticides phased-out for residential uses, but still used in agriculture (i.e., chlorpyrifos and diazinon) have declined in homes in the agricultural community; and estimate resident children's pesticide exposures via inadvertent dust ingestion. METHODS: In 2006, we collected up to two dust samples 5-8 days apart from each of 13 urban homes in Oakland, California and 15 farmworker homes in Salinas, California, an agricultural community (54 samples total). We measured 22 insecticides including organophosphates (chlorpyrifos, diazinon, diazinon-oxon, malathion, methidathion, methyl parathion, phorate, and tetrachlorvinphos) and pyrethroids (allethrin-two isomers, bifenthrin, cypermethrin-four isomers, deltamethrin, esfenvalerate, imiprothrin, permethrin-two isomers, prallethrin, and sumithrin), one phthalate herbicide (chlorthal-dimethyl), one dicarboximide fungicide (iprodione), and one pesticide synergist (piperonyl butoxide). RESULTS: More than half of the households reported applying pesticides indoors. Analytes frequently detected in both locations included chlorpyrifos, diazinon, permethrin, allethrin, cypermethrin, and piperonyl butoxide; no differences in concentrations or loadings were observed between locations for these analytes. Chlorthal-dimethyl was detected solely in farmworker homes, suggesting contamination due to regional agricultural use. Concentrations in samples collected 5-8 days apart in the same home were strongly correlated for the majority of the frequently detected analytes (Spearman ρ = 0.70-1.00, p < 0.01). Additionally, diazinon and chlorpyrifos concentrations in Salinas farmworker homes were 40-80% lower than concentrations reported in samples from Salinas farmworker homes studied between 2000-2002, suggesting a temporal reduction after their residential phase-out. Finally, estimated non-dietary pesticide intake for resident children did not exceed current U.S. Environmental Protection Agency's (U.S. EPA) recommended chronic reference doses (RfDs). CONCLUSION:Low-income children are potentially exposed to a mixture of pesticides as a result of poorer housing quality. Historical or current pesticide use indoors is likely to contribute to ongoing exposures. Agricultural pesticide use may also contribute to additional exposures to some pesticides in rural areas. Although children's non-dietary intake did not exceed U.S. EPA RfDs for select pesticides, this does not ensure that children are free of any health risks as RfDs have their own limitations, and the children may be exposed indoors via other pathways. The frequent pesticide use reported and high detection of several home-use pesticides in house dust suggests that families would benefit from integrated pest management strategies to control pests and minimize current and future exposures.Item Organophosphorous pesticide breakdown products in house dust and children’s urine.(2012) Quiros-Alcala, Lesliam; Bradman, Asa; Smith, Kimberly; Weerasekera, Gayanga; Odetokun, Martins; Barr, Dana B.; Nishioka, M; Castorina, R; Hubbard, AE; Nicas, M; Hammond, SK; McKone, TE; Eskenazi, BHuman exposure to preformed dialkylphosphates (DAPs) in food or the environment may affect the reliability of DAP urinary metabolites as biomarkers of organophosphate (OP) pesticide exposure. We conducted a study to investigate the presence of DAPs in indoor residential environments and their association with children’s urinary DAP levels. We collected dust samples from homes in farmworker and urban communities (40 homes total, n=79 samples) and up to two urine samples from resident children ages 3-6 years. We measured six DAPs in all samples and eight DAP-devolving OP pesticides in a subset of dust samples (n=54). DAPs were detected in dust with diethylphosphate (DEP) being the most frequently detected (>=60%); detection frequencies for other DAPs were <=50%. DEP dust concentrations did not significantly differ between communities, nor were concentrations significantly correlated with concentrations of chlorpyrifos and diazinon, the most frequently detected diethyl-OP pesticides (Spearman r=0.41 to 0.38, P>0.05). Detection of DEP, chlorpyrifos, or diazinon, was not associated with DEP and/or DEPþdiethylthiophosphate detection in urine (Kappa coefficients=-0.33 to 0.16). Finally, estimated nondietary ingestion intake from DEP in dust was found to be <=5% of the dose calculated from DEP levels in urine, suggesting that ingestion of dust is not a significant source of DAPs in urine if they are excreted unchanged.Item Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week.(2013-01) Bradman, Asa; Kogut, Katherine; Eisen, Ellen A.; Jewell, Nicholas; Quiros-Alcala, Lesliam; Castorina, Rosemary; Chevrier, Jonathan; Holland, Nina T.; Barr, Dana B.; Kavanagh-Baird, Gerry; Eskenazi, BrendaBackground: Dialkyl phosphate (DAP) metabolites in spot urine samples are frequently used to characterize children’s exposures to organophosphorous (OP) pesticides. However, variable exposure and short biological half-lives of OP pesticides could result in highly variable measurements, leading to exposure misclassification. Objective: We examined within- and between-child variability in DAP metabolites in urine samples collected during 1 week. Methods: We collected spot urine samples over 7 consecutive days from 25 children (3–6 years of age). On two of the days, we collected 24-hr voids. We assessed the reproducibility of urinary DAP metabolite concentrations and evaluated the sensitivity and specificity of spot urine samples as predictors of high (top 20%) or elevated (top 40%) weekly average DAP metabolite concentrations. Results: Within-child variance exceeded between-child variance by a factor of two to eight, depending on metabolite grouping. Although total DAP concentrations in single spot urine samples were moderately to strongly associated with concentrations in same-day 24-hr samples (r ≈ 0.6–0.8, p < 0.01), concentrations in spot samples collected > 1 day apart and in 24-hr samples collected 3 days apart were weakly correlated (r ≈ –0.21 to 0.38). Single spot samples predicted high (top 20%) and elevated (top 40%) full-week average total DAP excretion with only moderate sensitivity (≈ 0.52 and ≈ 0.67, respectively) but relatively high specificity (≈ 0.88 and ≈ 0.78, respectively). Conclusions: The high variability we observed in children’s DAP metabolite concentrations suggests that single-day urine samples provide only a brief snapshot of exposure. Sensitivity analyses suggest that classification of cumulative OP exposure based on spot samples is prone to type 2 classification errors.Item mSpray: A mobile phone technology to improve malaria control efforts and monitor human exposure to malaria control pesticides in Limpopo, South Africa(Elsevier, 2014-07) Eskenazi, Brenda; Quiros-Alcala, Lesliam; Lipsitt, Jonah M.; Wua, Lemuel D.; Kruger, Phillip; Ntimbane, Tzundzukani; Burns Nawn, John; Bornman, Riana; Seto, EdmundRecent estimates indicate that malaria has led to over half a million deaths worldwide, mostly to African children. Indoor residual spraying (IRS) of insecticides is one of the primary vector control interventions. However, current reporting systems do not obtain precise location of IRS events in relation to malaria cases, which poses challenges for effective and efficient malaria control. This information is also critical to avoid unnecessary human exposure to IRS insecticides. We developed and piloted a mobile-based application (mSpray) to collect comprehensive information on IRS spray events. We assessed the utility, acceptability and feasibility of using mSpray to gather improved homestead- and chemical-level IRS coverage data. We installed mSpray on 10 cell phones with data bundles, and pilot tested it with 13 users in Limpopo, South Africa. Users completed basic information (number of rooms/shelters sprayed; chemical used, etc.) on spray events. Upon submission, this information as well as geographic positioning system coordinates and time/date stamp were uploaded to a Google Drive Spreadsheet to be viewed in real time. We administered questionnaires, conducted focus groups, and interviewed key informants to evaluate the utility of the app. The low-cost, cell phone-based “mSpray” app was learned quickly by users, well accepted and preferred to the current paper-based method. We recorded 2865 entries (99.1% had a GPS accuracy of 20 m or less) and identified areas of improvement including increased battery life. We also identified a number of logistic and user problems (e.g., cost of cell phones and cellular bundles, battery life, obtaining accurate GPS measures, user errors, etc.) that would need to be overcome before full deployment. Use of cell phone technology could increase the efficiency of IRS malaria control efforts by mapping spray events in relation to malaria cases, resulting in more judicious use of chemicals that are potentially harmful to humans and the environment.Item Pyrethroid pesticide exposure and parental report of learning disability and attention-deficit hyperactivity disorder in U.S. children: NHANES 1999-2002.(2014) Quiros-Alcala, Lesliam; Mehta, Suril; Eskenazi, BrendaBackground: Use of pyrethroid insecticides has increased dramatically over the past decade; however, data on their potential health effects, particularly on children, are limited. Objective: We examined the cross-sectional association between postnatal pyrethroid exposure and parental report of learning disability (LD) and attention deficit/hyperactivity disorder (ADHD) in children 6–15 years of age. Methods: Using logistic regression, we estimated associations of urinary metabolites of pyrethroid insecticides with parent-reported LD, ADHD, and both LD and ADHD in 1,659–1,680 children participating in the National Health and Nutrition Examination Survey (1999–2002). Results: The prevalence rates of parent-reported LD, ADHD, and both LD and ADHD were 12.7%, 10.0%, and 5.4%, respectively. Metabolite detection frequencies for 3-PBA [3-phenoxybenzoic acid], cis-DCCA [cis-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylicacid], and trans-DCCA [trans-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylicacid] were 77.1%, 35.6%, and 33.9%, respectively. The geometric mean 3-PBA concentration was 0.32 μg/L (median = 0.31 μg/L; interquartile rage = 0.10–0.89 μg/L). cis– and trans-DCCA 75th-percentile concentrations were 0.21 μg/L and 0.68 μg/L, respectively. Log10-transformed 3-PBA concentrations were associated with adjusted odds ratios (ORs) of 1.18 (95% CI: 0.92, 1.51) for parent-reported LD, 1.16 (95% CI: 0.85, 1.58) for ADHD, and 1.45 (95% CI: 0.92, 2.27) for both LD and ADHD. Adjusted ORs remained nonsignificant and decreased after controlling for creatinine and other environmental chemicals previously linked to altered neurodevelopment. Similarly, no significant associations were observed for cis– and trans-DCCA. Conclusions: Postnatal pyrethroid exposure was not associated with parental report of LD and/or ADHD. Given the widespread and increasing use of pyrethroids, future research should evaluate exposures at current levels, particularly during critical windows of brain development.Item Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities(2015) Bradman, Asa; Quiros-Alcala, Lesliam; Castorina, Rosemary; Aguilar Schall, Raul; Camacho, Jose; Barr, Dana B.Background: Recent organic diet intervention studies suggest that diet is a significant source of pesticide exposure in young children. These studies have focused on children living in suburban communities. Objectives: We aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3–6 years of age, living in California urban and agricultural communities. Methods: In 2006, we collected urine samples over 16 consecutive days from children who consumed conventionally grown food for 4 days, organic food for 7 days, and then conventionally grown food for 5 days. We measured 23 metabolites, reflecting potential exposure to organophosphorous (OP), pyrethroid, and other pesticides used in homes and agriculture. We used linear mixed-effects models to evaluate the effects of diet on urinary metabolite concentrations. Results: For six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01). Chemical-specific metabolite concentrations for several OP pesticides, pyrethroids, and herbicides were either infrequently detected and/or not significantly affected by diet. Concentrations for most of the frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively). Conclusion: An organic diet was significantly associated with reduced urinary concentrations of nonspecific dimethyl OP insecticide metabolites and the herbicide 2,4-D in children. Additional research is needed to clarify the relative importance of dietary and non-dietary sources of pesticide exposures to young children.Item Determinants of urinary bisphenol A concentrations in Mexican/Mexican-American pregnant women.(Elsevier, 2013-09) Quiros-Alcala, Lesliam; Eskenazi, Brenda; Bradman, Asa; Ye, Xiaoyun; Calafat, Antonia M; Harley, KimPrenatal exposure to bisphenol A (BPA) may be associated with adverse health effects in the developing fetus; however, little is known about predictors of BPA exposure during pregnancy. We examined BPA exposure in 491 pregnant women from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort and explored the role of living in the United States on significant dietary predictors of BPA exposure. Women provided urine samples up to two times during pregnancy (n = 866 total samples). We computed the intraclass correlation coefficient (ICC) to evaluate variability in concentrations between collections and used generalized estimating equation (GEE) models to assess predictors of exposure. Geometric mean (GSD) BPA concentrations were 0.9 (2.8) μg/L and 1.0 (2.6) μg/L at the first and second prenatal visits, respectively. We observed greater within- than between-woman variability in urinary BPA concentrations (ICC = 0.22). GEE models suggest that women who lived in the United States their entire life had 38% (CI: − 0.1, 89.3) higher urinary BPA concentrations compared with other immigrant women. Additionally, women who consumed ≥ 3 sodas per day or hamburgers three times a week or more had 58% (CI: 18.0, 112.1) and 20% (CI: − 0.2, 45.2) higher urinary BPA concentrations, respectively, compared with women who consumed no sodas or hamburgers. A higher percentage of women who lived their entire life in the United States reported increased consumption of sodas and hamburgers compared with other immigrant women. Independent of other factors, BPA urinary concentrations were slightly higher when the sample was collected later in the day. As in previous studies, high within-woman variability in urinary BPA concentrations confirms that several samples are needed to properly characterize exposure during pregnancy. Results also suggest that some factors could be modified to minimize exposures during pregnancy in our study participants (e.g., reducing soda and hamburger intake) and that factors associated with acculturation might increase BPA concentrations.