Environmental Science & Technology
Permanent URI for this communityhttp://hdl.handle.net/1903/2216
Browse
2 results
Search Results
Item FATE AND TRANSPORT OF NITROGEN AT A DEEP ROW BIOSOLIDS APPLICATION HYBRID POPLAR TREE FARM(2012) Maimone, Diana; Felton, Gary K; Biological Resources Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This study evaluates deep row applied biosolids as a nutrient source for hybrid poplar trees grown on a gravel mine reclamation site in Brandywine, Maryland from November 2003 to April 2009. The study included biosolids application rates of 386, 773, and 1,159 dry Mg/ha (172, 345, and 517 dry ton/ac.) and hybrid poplar tree densities of 0, 716, and 1,074 trees/ha (0, 290, and 435 trees/ac.). Soil water samples taken from suction lysimeters located 15 - 120 cm (6 - 48 in.) vertically below the biosolids were analyzed for total ammoniacal-nitrogen (TAN) and nitrate-nitrogen (NO3-N). The majority (96.3%) of NO3-N values were less than EPA drinking water MCL of 10 mg/L. No NO3-N values within the tree plots exceeded 2 mg/L. The TAN concentrations increased with application rates, but decreased with distance from the biosolids, except there was no difference between 60 cm (24 in.) and 120 cm (48 in.).Item Fate and Transport of Nitrogen at a Deep Row Biosolids Application Hybrid Poplar Tree Farm(2006-08-10) Buswell, Carrie Ursula; Felton, Gary K; Biological Resources Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This study focused on a gravel mine reclamation site using biosolids in deep rows as a nutrient source and hybrid poplar trees as the stabilizing crop. Biosolids application rates of 481, 962, and 1443 dry Mg/ha and tree densities of 0, 716, and 1074 trees/ha and controls (0 dry Mg/ha - 0 trees/ha) were studied. Total nitrogen, ammonium, nitrite and nitrate in soil water samples from pan and suction lysimeters under and around the biosolids rows were evaluated. Total nitrogen was predominantly in the form of ammonium. Ammonium concentrations in more than half the samples were above 100 mg/L, reflecting the average biosolids concentration of 2,300 mg/kg. No significant differences (a = 0.05) were determined between application rates or tree densities, but ammonium concentration significantly decreased with distance below the biosolids row. Nitrite and nitrate nitrogen concentrations were predominantly non-detects or less than 1 mg/L, indicating that nitrification was not occurring.