Environmental Science & Technology
Permanent URI for this communityhttp://hdl.handle.net/1903/2216
Browse
4 results
Search Results
Item Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture(MDPI, 2019-11-23) Lansing, Stephanie; Choudhury, AbhinavCo-digestion of dairy manure with waste organic substrates has been shown to increase the methane (CH4) yield of farm-scale anaerobic digestion (AD). A gummy vitamin waste (GVW) product was evaluated as an AD co-digestion substrate using batch AD testing. The GVW product was added at four inclusion levels (0%, 5%, 9%, and 23% on a wet mass basis) to a co-digestion substrate mixture of dairy manure (DM), food-waste (FW), and grease-waste (GW) and compared to mono-digestion of the GVW, DM, FW, and GW substrates. All GVW co-digestion treatments significantly increased CH4 yield by 126–151% (336–374 mL CH4/g volatile solids (VS)) compared to DM-only treatment (149 mL CH4/g VS). The GVW co-digestion treatments also significantly decreased the hydrogen sulfide (H2S) content in the biogas by 66–83% (35.1–71.9 mL H2S/kg VS) compared to DM-only (212 mL H2S/kg VS) due to the low sulfur (S) content in GVW waste. The study showed that GVW is a potentially valuable co-digestion substrate for dairy manure. The high density of VS and low moisture and S content of GVW resulted in higher CH4 yields and lower H2S concentrations, which could be economically beneficial for dairy farmers.Item Evaluation of Hydrogen Sulfide Scrubbing Systems for Anaerobic Digesters on Two U.S. Dairy Farms(MDPI, 2019-12-04) Choudhury, Abhinav; Shelford, Timothy; Felton, Gary; Gooch, Curt; Lansing, StephanieHydrogen sulfide (H2S) is a corrosive trace gas present in biogas produced from anaerobic digestion systems that should be removed to reduce engine-generator set maintenance costs. This study was conducted to provide a more complete understanding of two H2S scrubbers in terms of efficiency, operational and maintenance parameters, capital and operational costs, and the effect of scrubber management on sustained H2S reduction potential. For this work, biogas H2S, CO2, O2, and CH4 concentrations were quantified for two existing H2S scrubbing systems (iron-oxide scrubber, and biological oxidation using air injection) located on two rural dairy farms. In the micro-aerated digester, the variability in biogas H2S concentration (average: 1938 ± 65 ppm) correlated with the O2 concentration (average: 0.030 ± 0.004%). For the iron-oxide scrubber, there was no significant difference in the H2S concentrations in the pre-scrubbed (450 ± 42 ppm) and post-scrubbed (430 ± 41 ppm) biogas due to the use of scrap iron and steel wool instead of proprietary iron oxide-based adsorbents often used for biogas desulfurization. Even though the capital and operating costs for the two scrubbing systems were low (<$1500/year), the lack of dedicated operators led to inefficient performance for the two scrubbing systems.Item Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure(MDPI, 2020-10-14) Hassanein, Amro; Witarsa, Freddy; Lansing, Stephanie; Qiu, Ling; Liang, YongAnaerobic digestion (AD) is a biological-based technology that generates methane-enriched biogas. A microbial electrolysis cell (MEC) uses electricity to initiate bacterial oxidization of organic matter to produce hydrogen. This study determined the effect of energy production and waste treatment when using dairy manure in a combined AD and MEC (AD-MEC) system compared to AD without MEC (AD-only). In the AD-MEC system, a single chamber MEC (150 mL) was placed inside a 10 L digester on day 20 of the digestion process and run for 272 h (11 days) to determine residual treatment and energy capacity with an MEC included. Cumulative H2 and CH4 production in the AD-MEC (2.43 L H2 and 23.6 L CH4) was higher than AD-only (0.00 L H2 and 10.9 L CH4). Hydrogen concentration during the first 24 h of MEC introduction constituted 20% of the produced biogas, after which time the H2 decreased as the CH4 concentration increased from 50% to 63%. The efficiency of electrical energy recovery (ηE) in the MEC was 73% (ηE min.) to 324% (ηE max.), with an average increase of 170% in total energy compared to AD-only. Chemical oxygen demand (COD) removal was higher in the AD-MEC (7.09 kJ/g COD removed) system compared to AD-only (6.19 kJ/g COD removed). This study showed that adding an MEC during the digestion process could increase overall energy production and organic removal from dairy manure.Item Assessment of Petroleum-Based Plastic and Bioplastics Degradation Using Anaerobic Digestion(MDPI, 2021-12-01) Nachod, Benjamin; Keller, Emily; Hassanein, Amro; Lansing, StephanieBioplastics have emerged as a viable alternative to traditional petroleum-based plastic (PET). Three of the most common bioplastic polymers are polyhydroxybutyrate-valerate (PHBV), polylactide (PLA), and cellulose-based bioplastic (CBB). This study assessed biodegradation through anaerobic digestion (AD) of these three bioplastics and PET digested with food waste (FW) at mesophilic (35 °C) and thermophilic (55 °C) temperatures. The four plastic types were digested with FW in triplicate batch reactors. Additionally, two blank treatments (inoculum-only) and two PHBV treatments (with FW + inoculum and inoculum-only) were digested at 35 and 55 °C. The PHBV treatment without FW at 35 °C (PHBV-35) produced the most methane (CH4) normalized by the volatile solids (VS) of the bioplastics over the 104-day experimental period (271 mL CH4/g VS). Most bioplastics had more CH4 production than PET when normalized by digester volume or gram substrate added, with the PLA-FW-55 (5.80 m3 CH4/m3), PHBV-FW-55 (2.29 m3 CH4/m3), and PHBV-55 (4.05 m3 CH4/m3) having 848,275 and 561%, respectively, more CH4 production than the PET treatment. The scanning electron microscopy (SEM) showed full degradation of PHBV pellets after AD. The results show that when PHBV is used as bioplastic, it can be degraded with energy production through AD.