Plant Science & Landscape Architecture

Permanent URI for this communityhttp://hdl.handle.net/1903/2266

Browse

Search Results

Now showing 1 - 10 of 205
  • Item
    The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions
    (MDPI, 2015-05-26) Tully, Katherine; Sullivan, Clare; Weil, Ray; Sanchez, Pedro
    The primary cause of soil degradation in sub-Saharan Africa (SSA) is expansion and intensification of agriculture in efforts to feed its growing population. Effective solutions will support resilient systems, and must cut across agricultural, environmental, and socioeconomic objectives. While many studies compare and contrast the effects of different management practices on soil properties, soil degradation can only be evaluated within a specific temporal and spatial context using multiple indicators. The extent and rate of soil degradation in SSA is still under debate as there are no reliable data, just gross estimates. Nevertheless, certain soils are losing their ability to provide food and essential ecosystem services, and we know that soil fertility depletion is the primary cause. We synthesize data from studies that examined degradation in SSA at broad spatial and temporal scales and quantified multiple soil degradation indicators, and we found clear indications of degradation across multiple indicators. However, different indicators have different trajectories—pH and cation exchange capacity tend to decline linearly, and soil organic carbon and yields non-linearly. Future research should focus on how soil degradation in SSA leads to changes in ecosystem services, and how to manage these soils now and in the future.
  • Item
    A Comparison of Irrigation-Water Containment Methods and Management Strategies Between Two Ornamental Production Systems to Minimize Water Security Threats
    (MDPI, 2019-12-03) Ristvey, Andrew G.; Belayneh, Bruk E.; Lea-Cox, John D.
    Water security in ornamental plant production systems is vital for maintaining profitability. Expensive, complicated, or potentially dangerous treatment systems, together with skilled labor, is often necessary to ensure water quality and plant health. Two contrasting commercial ornamental crop production systems in a mesic region are compared, providing insight into the various strategies employed using irrigation-water containment and treatment systems. The first is a greenhouse/outdoor container operation which grows annual ornamental plants throughout the year using irrigation booms, drip emitters, and/or ebb and flow systems depending on the crop, container size, and/or stage of growth. The operation contains and recycles 50–75% of applied water through a system of underground cisterns, using a recycling reservoir and a newly constructed 0.25 ha slow-sand filtration (SSF) unit. Groundwater provides additional water when needed. Water quantity is not a problem in this operation, but disease and water quality issues, including agrochemicals, are of potential concern. The second is a perennial-plant nursery which propagates cuttings and produces field-grown trees and containerized plants. It has a series of containment/recycling reservoirs that capture rainwater and irrigation return water, together with wells of limited output. Water quantity is a more important issue for this nursery, but poor water quality has had some negative economic effects. Irrigation return water is filtered and sanitized with chlorine gas before being applied to plants via overhead and micro-irrigation systems. The agrochemical paclobutrazol was monitored for one year in the first operation and plant pathogens were qualified and quantified over two seasons for both production systems. The two operations employ very different water treatment systems based on their access to water, growing methods, land topography, and capital investment. Each operation has experienced different water quantity and quality vulnerabilities, and has addressed these threats using a variety of technologies and management techniques to reduce their impacts.
  • Item
    The kinetics and quantum yield of photophosphorylation in Anacystis nidulans (Richt.) Drouet
    (1972) Owens, Olga v. H.; Krauss, Robert W.; Plant Physiology; Digital Repository at the University of Maryland; University of Maryland (College Park, MD)
    The active metabolite, ATP, serves not only as a high energy intermediate but also as a controller of some enzymatic reactions. In plant cells, the larger part of the ATP is formed by photophosphorylation. In this paper the rates, the quantum yields, and the wavelength dependencies of photophosphorylation in the blue-green alga Anacystis nidulans are reported. A fluorometric method for determination of enzymatically produced NADPH from ATP was adapted for use on cell extracts. In the light, the ATP level was 0.15 to 0.25 µmoles/mg chl. In the dark, the ATP level was 70% of that in light. In both darkness and anaerobosis, the level was 20%. A return to the light restored the ATP level from both conditions. Dark, anaerobic cells were exposed to measured irradiancies of 710 nm and 620 nm. The rate of ATP formation was measured within the first few seconds and found to be directly proportional to absorbed intensity. Saturation of the rates occurred at an intensity one-tenth the optimum for oxygen production. Quantum requirements of 6-8 were similar for each of the two wavelengths. The system II inhibitor DCMU, had a greater effect at 620 nm that at 710 nm indicating an involvement of system II in photophosphorylation only at 620 nm. At low intensities and over long time periods white light failed to produce a saturating steady-state level of ATP indicating a simultaneous consumption of ATP. Measurements in short dark periods following marginal illumination showed consumption of ATP to be 2 to 4 times greater that production in weak light. Thus, the quantum requirement can be calculated to be 2. ATP formation, therefore, is not the limit ing factor in co2 fixation. The evidence is the high quantum yield of photophosphorylation and the unsaturation of co2 fixation at intensities at which ATP synthesis is saturated.
  • Item
    A Revision of North American Melanthium L. (Liliaceae)
    (1978) Bodkin, Norlyn Lee; Reveal, James L.; Botany; Digital Repository at the University of Maryland; University of Maryland (College Park, Md)
    Melanthium L. (Liliaceae ) is a genus of perhaps eight species with the four species of North America distributed from central Iowa eastward to southern New York, south to northern Florida and eastern Texas. The type species , M. -virginicum L., is found over this entire range growing commonly in swamps , marshes and bogs. Melanthium latifolium Desr. , found mostly on rich wooded slopes, and M. parviflorum (Michx.) S. Wats. located at higher elevations, occur mainly in the mid-Appalachian mountains. Melanthium woodii (Robbins ex Wood) Bodkin, comb. nov., is known from rich deciduous slopes of the Ozark Plateaus where it is very local and rare, and from five small disjunct populations in three eastern states. The major decision made in this treatment is the maintenance of Melanthium as distinct from the heterogeneous genus Veratrum L. on the basis of leaf size and shape, inflorescence, features of the tepalular glands and claws, adnation of stamens to tepals and general habit of the plants. The numerous synonyms associated with the name Melanthium are treated and either included under that genus , or excluded and assign d to their proper genera. The four (tentatively) Asian species, all of southwestern China , are not discussed due to a paucity of recent material.
  • Item
    Net Productivity of Emergent Vegetation at Horn Point Salt Marsh
    (1975) Cahoon, Donald Richard; Stevenson, John C.; Botany; Digital Repository at the University of Maryland; University of Maryland (College Park, Md)
    Analyses of monthly standing crop, daily rates of production, and variations in yearly productivity for 5 production for the Spartina patens/Distichlis spicata mixture were conducted over two consecutive growing seasons for a Chesapeake Bay brackish marsh. Regression models for plant height and dry weight biomass were generated for all that the relationship between height and dry weight within each species is the same for all seasons of the year except in the species Spartina alterniflora and Phragmites australis. Positive correlation coefficients ranged from .27 for S. alterniflora to .96 for P. australis with the other species having intermediate value. Overall, production at Horn Point is lower than most other values in the literature with the 2-year average for S. alterniflora (676 g/m2) being 1/2 the average for the Atlantic Coast but the 2-year average for S. patens (628 g/m2) being slightly higher than its Atlantic Coast average. On a square meter basis, the primary producers rank in the following order of importance for the two year average of standing crop: Typha angustifolia (985 g/m2), Phragmites australis (892 g/m2), S. alterniflora/Amaranthus cannabinus (676 g/m2), S. patens/D. spicata (628 g/m2), and Hibiscus moscheutos (531 g/m2). However, the most important zones in terms of areally weighted production (in metric tons) for 1973 at Horn Point Marsh are the S. patens/D. spicata (7.61), H. mocheutos (5.07), S. alterniflora/A. cannabinus (3.22), P. australis (0.659), and T. angustifolia/H. moscheutos (0.644). In the brackish marsh (S. patens/D. spicata) exclosure experiments demonstrated that almost 100% of the net primary production (NPP) passes through the detritus food chain but in the contiguous fresh marsh (H. moscheutos) 37% of the NPP is utilized by the grazing food chain. Underground production for S. patens/D. spicata was determined by an experimental approach involving transplantations of underground material and a dry weight shoot:root ratio of 1:16 was determined over a twelve month period. An efficiency rate for conversion of visible solar radiation to plant production in 1974 ranged from 0.11% for H. moscheutos in the Typha/Hibiscus zone to 1.12% for the Typha angustifolia/Hibiscus moscheutos mixture.
  • Item
    A Study of the Soils Derived from Serpetinite and Associated Rocks in Maryland
    (1978) Rabenhorst, Martin Capell; Foss, John E.; Agronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md)
    Approximately 25,000 acres have been mapped as serpentinite-derived soils in Maryland. While fertility studies have been done in serpentine areas, little work has been undertaken concerning the genesis of these soils. The objectives of this study were: 1) characterize the properties of soils formed from serpentinite and associated mafic rocks; 2) apply the results of the characterization study to an understanding of the genesis of these soils; and 3) examine the mapping and classification of serpentine soils with reference to geologic mapping. In a reconnaissance effort, 48 sites were sampled and analyzed for extractable Mg, Ca, P, and K and for pH. From field observations and these data, seven locations were selected for profile descriptions and detailed sampling. Physical, chemical , and mineralogical analyses were conducted on these samples. All serpentine profiles showed weak to moderate expression of argillic horizons and as a result of high Mg saturation, are classified as Alfisols. Argillic horizons in the non-serpentine profiles were strongly developed. Serpentine minerals were generally abundant in the > 0.2 μm fractions of serpentinite-derived soils. These weather to form expansible 2:1 minerals in the finer fractions. Vermiculite and smectite were important in both serpentine and non-serpentine profiles. The presence of quartz, mica, and feldspar in the surface horizons of all profiles indicate that eolian additions have occurred in many counties in the Maryland Piedmont. Comparison of soil mapping with geologic mapping has revealed large acreages of serpentine soil units mapped over non-serpentine mafic rock . This demonstrates the need to better utilize available geologic information in soil mapping. Serpentinitic mineral families are not currently recognized in any soil series in Maryland. Three of the four serpentine profiles, however, contained high levels of serpentine minerals. There is, therefore, a need to recognize serpentinitic soil families in Maryland in order to better differentiate between soils formed from serpentinite or from non-serpentine mafic rocks.
  • Item
    High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice
    (Springer Nature, 2012-08-03) Barrera-Figueroaroa, Blanca E; Gao, Lei; Wu, Zhigang; Zhou, Xuefeng; Zhu, Jianhua; Jin, Hailing; Liu, Renyi; Zhu, Jian-Kang
    MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants, they are not well studied in reproductive tissues such as inflorescences. We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress. We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase. We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3, and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable elements or repeats, especially miniature inverted-repeat elements (MITEs). We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA origination.
  • Item
    Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populusand the plant kingdom
    (Springer Nature, 2013-08-19) Pettengill, Emily A; Pettengill, James B; Coleman, Gary D
    Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling. We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses. In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously uncharacterized NP-like proteins may function in nutrient sensing and/or signaling. These proteins are members of Group I NP-like proteins, which are widely distributed in many plant taxa. We conclude that NP-like proteins may function in plants, although this function is undefined.
  • Item
    Proteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditions
    (Springer Nature, 2014-04-30) Islam, Nazrul; Kim, Yonghyun; Ross, Julia M; Marten, Mark R
    The biofilm forming bacterium Staphylococcus aureus is responsible for maladies ranging from severe skin infection to major diseases such as bacteremia, endocarditis and osteomyelitis. A flow displacement system was used to grow S. aureus biofilms in four physiologically relevant fluid shear rates (50, 100, 500 and 1000 s-1) to identify proteins that are associated with biofilm. Global protein expressions from the membrane and cytosolic fractions of S. aureus biofilm cells grown under the above shear rate conditions are reported. Sixteen proteins in the membrane-enriched fraction and eight proteins in the cytosolic fraction showed significantly altered expression (p < 0.05) under increasing fluid shear. These 24 proteins were identified using nano-LC-ESI-MS/MS. They were found to be associated with various metabolic functions such as glycolysis / TCA pathways, protein synthesis and stress tolerance. Increased fluid shear stress did not influence the expression of two important surface binding proteins: fibronectin-binding and collagen-binding proteins. The reported data suggest that while the general metabolic function of the sessile bacteria is minimal under high fluid shear stress conditions, they seem to retain the binding capacity to initiate new infections.
  • Item
    Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion
    (Springer Nature, 2016-10-21) Lin, Chien-Yuan; Jakes, Joseph E.; Donohoe, Bryon S.; Ciesielski, Peter N.; Yang, Haibing; Gleber, Sophie-Charlotte; Vogt, Stefan; Ding, Shi-You; Peer, Wendy A.; Murphy, Angus S.; McCann, Maureen C.; Himmel, Michael E.; Tucker, Melvin P.; Wei, Hui
    Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery.