Astronomy

Permanent URI for this communityhttp://hdl.handle.net/1903/2215

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    HI Observations of Low Surface Brightness Galaxies: Probing Low Density Galaxies
    (Blackwell, 1996) de Blok, W.J.G.; McGaugh, S.S.; van der Hulst, J.M.
    We present Very Large Array (vla) and Westerbork Synthesis Radio Telescope (wsrt) 21-cm Hi observations of 19 late-type low surface brightness (LSB) galaxies. Our main findings are that these galaxies, as well as having low surface brightnesses, have low Hi surface densities, about a factor of ~ 3 lower than in normal late-type galaxies. We show that LSB galaxies in some respects resemble the outer parts of late-type normal galaxies, but may be less evolved. LSB galaxies are more gas-rich than their high surface brightness counterparts. The rotation curves of LSB galaxies rise more slowly than those of HSB galaxies of the same luminosity, with amplitudes between 50 and 120 km s−1, and are often still increasing at the outermost measured point. The shape of the rotation curves suggests that LSB galaxies have low matter surface densities. We use the average total mass surface density of a galaxy as a measure for the evolutionary state, and show that LSB galaxies are among the least compact, least evolved galaxies. We show that both MHI/LB and Mdyn/LB depend strongly on central surface brightness, consistent with the surface brightness–mass-to-light ratio relation required by the Tully-Fisher relation. LSB galaxies are therefore slowly evolving galaxies, and may well be low surface density systems in all respects.
  • Thumbnail Image
    Item
    The Dark and Baryonic Matter Content of Low Surface Brightness Galaxies
    (Blackwell, 1997) de Blok, W.J.G.; McGaugh, S.S.
    We present mass models of a sample of 19 low surface brightness (LSB) galaxies and compare the properties of their constituent mass components with those of a sample of high surface brightness (HSB) galaxies. We find that LSB galaxies are dark matter dominated. Their halo parameters are only slightly affected by assumptions on stellar mass-to-light ratios. Comparing LSB and HSB galaxies we find that mass models derived using the maximum disk hypothesis result in the disks of LSB galaxies having systematically higher stellar mass-to-light ratios than HSB galaxies of similar rotation velocity. This is inconsistent with all other available evidence on the evolution of LSB galaxies. We argue therefore that the maximum disk hypothesis does not provide a representative description of the LSB galaxies and their evolution. Mass models with stellar mass-to-light ratios determined by the colors and stellar velocity dispersions of galactic disks imply that LSB galaxies have dark matter halos that are more extended and less dense than those of HSB galaxies. Surface brightness is thus related to the halo properties. LSB galaxies are slowly evolving, low density and dark matter dominated galaxies.
  • Thumbnail Image
    Item
    Simulating Observations of Dark Matter Dominated Galaxies: Towards the Optimal Halo Profile
    (Blackwell, 2007) de Blok, W.J.G.; Bosma, Albert Bosma; McGaugh, Stacy
    Low Surface Brightness (LSB) galaxies are dominated by dark matter, and their rotation curves thus reflect their dark matter distribution. Recent high-resolution rotation curves suggest that their dark matter mass-density distributions are dominated by a constant-density core. This seems inconsistent with the predictions of Cold Dark Matter (CDM) models which produce halos with compact density cusps and steep mass-density profiles. However, the observationally determined mass profiles may be affected by non-circular motions, asymmetries and offsets between optical and dynamical centres, all of which tend to lower the observed slopes. Here we determine the impact of each of these effects on a variety of halo models, and compare the results with observed mass-density profiles. Our simulations suggest that no single systematic effect can reconcile the data with the cuspy CDM halos. The data are best described by a model with a soft core with an inner power-law mass-density slope ⍺ = −0.2±0.2. However, no single universal halo profile provides a completely adequate description of the data.