Astronomy
Permanent URI for this communityhttp://hdl.handle.net/1903/2215
Browse
Item 1620 GEOGRAPHOS AND 433 EROS: SHAPED BY PLANETARY TIDES?(University of Chicago Press, 1999) BOTTKE, W. F. JR.; RICHARDSON, D. C.; MICHEL, P.; LOVE, S. G.Until recently, most asteroids were thought to be solid bodies whose shapes were determined largely by collisions with other asteroids. Recent work by Burns and others has shown that many asteroids may be little more than rubble piles, held together by self-gravity ; this means that their shapes may be strongly distorted by tides during close encounters with planets. Here we report on numerical simulations of encounters between an ellipsoid-shaped rubble-pile asteroid and Earth. After an encounter, many of the simulated asteroids develop the same rotation rate and distinctive shape as 1620 Geographos (i.e., highly elongated with a single convex side, tapered ends, and small protuberances swept back against the rotation direction). Since our numerical studies show that these events occur with some frequency, we suggest that Geographos may be a tidally distorted object. In addition, our work shows that 433 Eros, which will be visited by the NEAR spacecraft in 1999, is much like Geographos, suggesting that it too may have been molded by tides in the past.Item ABOVE THE CLOUDS: 1-D MODELING OF OBSERVATIONS OF TIDALLY LOCKED EXTRASOLAR WORLDS(2019) Afrin Badhan, Mahmuda; Deming, L. Drake; Domagal-Goldman, Shawn D.; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Unique and exotic planetary environments give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our planetary system in the context of vastly different extrasolar systems. With orbital separations a fraction of the Mercury-Sun distance, these close-in planets provide us with valuable insights regarding interactions between the stellar and planetary atmospheres. Further, observational biases actually allow such planets to be the first to be observed via transit spectroscopy. Observed spectrophotometric signatures from transit measurements can reveal spectrally active species in a planet’s atmosphere. Present observational technologies can also shed light on the atmosphere’s structure and dynamics. Future missions will allow us to constrain these properties with unprecedented accuracy, and are also being designed to observe increasingly smaller, cooler and less extreme planets. The eventual goal, after all, is to identify a world like our own. To interpret the observations with any certainty, however, we must build robust atmospheric models that sufficiently factor both physical and chemical processes expected in those atmospheres. 3-D climate modeling has shown that tidally-locked Earth-like planets, at the inner edge of M dwarf habitable zones, may retain water-vapor-rich stratospheres. However, flaring M dwarfs have strong UV activity, which may photodisassociate H2O. Using synthetical stellar UV within a 1-D photochemical model, I assess whether water vapor loss driven by high stellar UV would affect its detectability in JWST/MIRI transmission spectroscopy. I pseudo-couple a 3-D climate model to our 1-D model to achieve this. In a follow-up study, I also compute 125 additional atmospheric states by varying the Earth-like planet’s orbital distance (thus moistness) and methane production rates. I check for and quantify the simultaneous presence of detectable ozone and methane in an otherwise abiotic anoxic atmosphere. I have also implemented techniques to robustly quantify atmospheric properties of hot Jupiters from data-driven retrievals and built a versatile template for hot Jupiter atmospheres within our 1-D photochemical modeling tool, which was previously only valid for cool rocky worlds. I sketch out a plan for using this work towards mapping non-equilibrated (non-LTE) emissions from methane in the upper atmospheres of observable giants.Item Accretion onto Black Holes from Large Scales Regulated by Radiative Feedback(2012) Park, KwangHo; Ricotti, Massimo; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This thesis focuses on radiation-regulated gas accretion onto black holes (BHs) from galactic scales emphasizing the role of thermal and radiation pressure in limiting gas supply to the BH. Assuming quasi-spherical symmetry, we explore how the gas accretion depends on free parameters such as radiative efficiency, BH mass, ambient gas density/temperature, and the spectral index of the radiation. Our numerical simulations show an oscillatory behavior of the accretion rate, and thus the luminosity from the BH. We present a model for the feedback loop and provide analytical relationships for the average/maximum accretion rate and the period of the accretion bursts. The thermal structure inside the str sphere is a key factor for the regulation process, while with increasing ambient gas density and mass of BHs eventually the accretion rate becomes limited by radiation pressure. The period of the luminosity bursts is proportional to the average size of the ionized hot bubble, but we discover that there are two distinct modes of oscillations with very different duty cycles that are governed by different depletion processes of the gas inside the ionized bubble. We also study how angular momentum of the gas affects the accretion process. In the second part of the thesis, we study the growth rate and luminosity of BHs in motion with respect to their surrounding medium. Contrary to the case without radiation feedback, we find that the accretion rate increases with increasing BH velocity, v, reaching a maximum value at v ~ 20-30 km/s, before decreasing as v^{-3}. The increase of the accretion rate with v is produced by the formation of a D-type (density) ionization front (I-front) preceded by a standing bow-shock that reduces the downstream gas velocity to nearly sub-sonic values. Interestingly, there is a range of densities and velocities in which the dense shell downstream of the bow-shock is unstable; its central part is destroyed and reformed intermittingly, producing a periodic accretion rate with peak values about 10 times the mean. This effect can significantly increase the detectability of accreting intermediate mass BHs from the interstellar medium (ISM) in nearby galaxies. We find that the maximum accretion rate for a moving BH is larger than that of a stationary BH of the same mass, accreting from the same medium, if the medium temperature is T<10^4 K. This result could have an important impact on our understanding of the growth of seed BHs in the multi-phase medium of the first galaxies and for building and early X-ray background that may affect the formation of the first galaxies and the reionization process.Item Accretion Physics Through the Lens of the Observer: Connecting Fundamental Theory with Variability from Black Holes(2018) Hogg, James Andrew; Reynolds, Christopher S; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Variability is a generic feature of accretion onto black holes. In both X-ray binaries and active galactic nuclei, variability is observed on nearly all accessible timescales and across the entire electromagnetic spectrum. On different timescales and at different wavelengths it has unique signatures that can be used to characterize the accretion processes generating the emission and probe the accretion disks, which would otherwise be impossible. Despite having been observed for over fifty years, interpreting this variability is difficult. Simple phenomenological models have been used to explain the behaviors and geometries of the observed accretion disk, but they have yet to be rigorously tested in a full magnetohydrodynamic framework. In this dissertation we use high-resolution numerical models to investigate: (1) ``propagating fluctuations" in mass accretion rate that give rise to the nonlinear signatures of accretion on viscous timescales, (2) the dynamics of truncated accretion disks which are invoked to explain the spectral variation of outbursting X-ray binaries and the bifurcation of AGN accretion states, and (3) the large-scale magnetic dynamo behavior in thick and thin accretion disks. We find that the structured variability readily seen in the light curves from accreting black holes (i.e. log-normal flux distributions, linear relations between the RMS and the flux, and radial coherence) quickly and naturally grows from the MRI-driven turbulence and that these properties translate into photometric variability. For the first time, we identify the large-scale magnetic dynamo as the source of the low-frequency modulations of the disk stress that cause this structure. We introduce a bistable cooling law into hydrodynamic and magnetohydrodynamic simulations to study the manifestation of a truncated accretion disk in each regime. We find that rather than a truncation edge, the transition is better described by a ``truncation zone" when the angular momentum transport and heating is governed by MRI-driven turbulence instead of a true viscosity. Additionally, we find that the hot gas in the simulation buoyantly rises in a gentle outflow and eventually fills the entire volume, instead of simply being confined to the innermost region. The outflow interacts with the disk body and enhances the magnetic stresses, which could produce stronger quasiperiodic variability. Finally, we conduct an investigation of the large-scale magnetic dynamo using a suite of four global magnetohydrodynamic disk simulations with scaleheight ratios of $h/r=\{0.05, 0.1, 0.2, 0.4\}$. Most notably, the organization that is prevalent in accretion disk simulations and described as a ``butterfly pattern" does not occur when $h/r \ge 0.2$, despite the dynamo action still operating efficiently.Item ACTIVE GALACTIC NUCLEUS FEEDBACK IN GIANTS AND DWARFS(2022) Liu, Weizhe; Veilleux, Sylvain; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Feedback from Active Galactic Nucleus (AGN) may play a critical role in the coevolution of galaxies and supermassive black holes (SMBH). Specifically, AGN feedback may quench star formation, suppress baryon-to-dark matter mass ratio, shape galaxy morphology, impact the circumgalactic (CGM)/intergalactic medium (IGM), and regulate SMBH accretion. One of the most important forms of AGN feedback is powerful, quasar/AGN-driven outflows. However, the physical details of these outflows, including their driving mechanism and spatial extent, are still not well constrained. In addition, while these outflows are believed to be effective in massive galaxies, their impact on dwarf galaxies (M⋆ ~10^9.5 M⊙) remains largely unknown. To answer these open questions, my thesis focuses on AGN feedback via quasar/AGN-driven outflows in both ultraluminous infrared galaxies (ULIRGs) and dwarf galaxies with four projects.In the first half of my thesis, I examine the outflows in nearby ULIRGs with two objectives: In Chapter 2, I present a dedicated investigation of the highly ionized, likely pc-scale quasar/AGN winds in a sample of 21 nearby ULIRGs through HST/COS far-ultraviolet (FUV) spectroscopy. Blueshifted Lyα emission is prevalent in the sample, which is probably closely related to the outflowing gas and AGN activity in these objects. Additionally, the Lyα escape fractions tend to be slightly larger in objects with stronger AGN and larger outflow velocities. Highly ionized O VI and N V outflows are detected in a coherently selected, AGN-dominated ULIRG sample for the first time. Together with the results from a matched quasar sample, these outflows show higher incidence rates and larger EW and velocities in X-ray weak sources and sources with high X-ray absorbing column densities, implying that these outflows are radiatively-driven; In Chapter 3, I describe a deep, Chandra imaging spectroscopy study of the nearby ULIRG Mrk 273. The data have revealed a ∼40 kpc×40 kpc X-ray nebula, which is relatively hot and has a super-solar α/Fe abundance ratio. This nebula is most likely heated and metal-enriched by outflows over time. Additionally, the existence of a dual AGN is strongly suggested by the data, and extended 1–3 keV emission are detected, likely related to the AGN photoionized gas and/or outflowing gas. In the second half of my thesis, I turn to look at the AGN-driven outflows in dwarf galaxies: In Chapter 4, I report the results from a dedicated optical integral field spectroscopic study of a sample of eight dwarf galaxies with known AGN and suspected outflows. Fast, kpc-scale outflows are detected in seven of them. The outflows show 50-percentile (median) velocity of up to ∼240 km s^−1 and 80-percentile line width reaching ∼1200 km s^−1, in clear contrast with the more quiescent kinematics of the host gas and stellar components. The kinematics and energetics of these outflows suggest that they are primarily driven by the AGN. A small but non-negligible portion of the outflowing material likely escapes the main body of the host galaxy and contributes to the enrichment of the circumgalactic medium. The impact of these outflows on their dwarf host galaxies is similar to those taking place in the more luminous AGN with massive hosts in the low-redshift universe. In Chapter 5, I discuss the results from a pilot HST/COS spectroscopy program to examine three objects studied in Chapter 4. Blueshifted absorption features tracing fast outflows are detected in two of the three objects. For object J0954+47, the outflow is detected in multiple ions and is much faster than those in star-forming galaxies with similar star formation rates. The outflow velocity exceeds the escape velocity of this system, suggesting that a large fraction of the outflowing gas may escape. The outflow carries significant amount of mass, momentum and kinetic energy, which may transport material out of the galaxy more efficiently than the gas consumption by star formation. The ratio of kinetic energy outflow rate to AGN luminosity of this outflow is at least comparable to the expectation from simulations of AGN feedback.Finally, in Chapter 6, I summarize the main results of the whole thesis, and briefly highlight several future works that may lead to a more comprehensive understanding of AGN feedback in ULIRGs and dwarf galaxies.Item The AGN and Gas Disk in the Low Surface Brightness Galaxy PGC045080(Blackwell, 2007) Das, M.; Kantharia, N.; Ramya, S.; Prabhu, T. P.; McGaugh, S. S.; Vogel, S. N.We present radio observations and optical spectroscopy of the giant low surface brightness (LSB) galaxy PGC 045080 (or 1300+0144). PGC 045080 is a moderately distant galaxy having a highly inclined optical disk and massive HI gas content. Radio continuum observations of the galaxy were carried out at 320 MHz, 610 MHz and 1.4 GHz. Continuum emission was detected and mapped in the galaxy. The emission appears extended over the inner disk at all three frequencies. At 1.4 GHz and 610 MHz it appears to have two distinct lobes. We also did optical spectroscopy of the galaxy nucleus; the spectrum did not show any strong emission lines associated with AGN activity but the presence of a weak AGN cannot be ruled out. Furthermore, comparison of the H flux and radio continuum at 1.4 GHz suggests that a significant fraction of the emission is non-thermal in nature. Hence we conclude that a weak or hidden AGN may be present in PGC 045080. The extended radio emission represents lobes/jets from the AGN. These observations show that although LSB galaxies are metal poor and have very little star formation, their centers can host significant AGN activity. We also mapped the HI gas disk and velocity field in PGC 045080. The HI disk extends well beyond the optical disk and appears warped. In the HI intensity maps, the disk appears distinctly lopsided. The velocity field is disturbed on the lopsided side of the disk but is fairly uniform in the other half. We derived the HI rotation curve for the galaxy from the velocity field. The rotation curve has a flat rotation speed of 190km s−1.Item An Analysis of the Environment and Gas Content of Luminous Infrared Galaxies(2010) Zauderer, Bevin Ashley; Vogel, Stuart N; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Luminous and ultraluminous infrared galaxies (U/LIRGs) represent a population among the most extreme in our universe, emitting an extraordinary amount of energy at infrared wavelengths from dust heated by prolific star formation and/or an active galactic nucleus (AGN). We present three investigations of U/LIRGs to better understand their global environment, their interstellar medium properties, and their nuclear region where molecular gas feeds a starburst or AGN. To study the global environment, we compute the spatial cluster-galaxy amplitude, Bgc, for 76 z < 0.3 ULIRGs. We find the environment of ULIRGs is similar to galaxies in the field. Comparing our results with other galactic populations, we conclude that ULIRGs might be a phase in the lives of AGNs and QSOs, but not all moderate-luminosity QSOs necessarily pass through a ULIRG phase. To study the interstellar medium properties, we observe HI and other spectral lines in 77 U/LIRGs with the Arecibo telescope. We detect HI in emission or absorption in 61 of 77 galaxies, 52 being new detections. We compute the implied gas mass for galaxies with emission, and optical depths and column densities for the seven sources with absorption detections. To study the molecular gas in the nuclear region of LIRG Arp 193, sub-arcsecond scale angular resolution is required and a method of atmospheric phase correction imperative. We present results of a large experiment observing bright quasars to test the limitations of the Combined Array for Research in Millimeter Astronomy's Paired Antenna Calibration System (C-PACS) for atmospheric phase correction. We conclude that C-PACS improves imaging capabilities when the atmospheric calibrator is nearby (≤ 6°), bright (> 1 Jy), and at moderately high elevation (> 45°). We map Arp 193 in 12CO(2-1) with CARMA, achieving 0.18'' x 0.12'' (~65 pc) resolution, and demonstrating an improvement with C-PACS. We compute a molecular gas mass of 2 x 109 Msun and find ~20% of the total mass is in the form of molecular gas out to a radius of 750 pc. In the inner 150 pc of the nucleus, N(H2) > 1025 cm-2.Item ANALYZING THE STAR FORMATION EFFICIENCY AND PHYSICAL CONDITIONS OF THE MOLECULAR GAS IN NEARBY GALAXIES(2023) Villanueva, Vicente; Bolatto, Alberto D; Vogel, Stuart N; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Star formation activity plays a key role in driving galaxy evolution, and it depends on the amount of cold gas available (as traced by CO emission) and on the physical conditions and dynamical state of this gas. This work focuses on investigating the star formation efficiency of the gas, both molecular and total, as a function of local and global galaxy properties. The galaxy samples studied in this thesis are representative of the nearby universe, and we use a combination of interferometric CO observations and integral field unit optical spectroscopy for most of our analyses. First, we show that in a sample of galaxies dominated by ``field galaxies'' the disk scale lengths for the molecular and stellar components are very similar, reflecting the close relation between CO emission and star formation activity. Our analysis of the radial dependence of the star formation efficiency of the total gas on morphological, structural, and dynamical properties of the galaxies shows that there is a smooth, continuous exponential decline with increasing radius (mostly driven by the increased contribution of atomic gas), and a systematic increase in the average gas efficiency from early to late type galaxies. Our results also show a morphological dependence of the efficiency per orbital time, which may reflect star formation quenching due to the presence of a bulge. Next, we test the impact of environmental processes on galaxies immersed in the rich environment of the Virgo cluster. We show that in these galaxies the CO emission is more centrally concentrated than the stars, unlike what we saw in the field. Moreover, in the central regions of galaxies with an increasing level of perturbation (as determined by the morphology and kinematics of their atomic gas emission), the mean molecular-to-atomic gas ratio increases while the star formation efficiency of the molecular gas in the same region decreases. This demonstrates that the cluster environment not only affects the outskirts of galaxy disks and their atomic gas, but deeply changes the distribution and efficiency of the centrally located molecular gas component. Finally, we study the onset of star formation cessation in galaxies (``quenching'') by investigating a complete sample of galaxies spanning from the main sequence (normal star forming objects) to the green valley (galaxies which are starting to quench) to the red cloud (galaxies that are mostly quiescent, that is, ``red and dead'' objects). We find that the star formation activity and the molecular gas-to-stellar mass ratio track each other. We also note that green valley galaxies have lower molecular star formation efficiencies than galaxies on the main sequence. On average, we find that within the bulges of green valley galaxies the molecular gas star formation efficiency is lower than in main sequence galaxies. Also in green valley galaxies, we find that the molecular gas to stellar ratio, the molecular gas star formation efficiency, and the specific star formation rate all increase with increasing distance to the center. Our results suggest that gas depletion or removal does not fully explain the star-formation quenching in galaxies transiting through the green valley, and that a reduction in star formation efficiency is also required during this stage. This is reminiscent of the so-called ``morphological quenching.''Item Animated Sequences Showing the Ejecta Produced in the DART Impact of Asteroid (65803) Didymos(2025-01-17) Farnham, TonyThis data collection contains animated sequences showing different aspects of the ejecta that were observed after the Double Asteroid Impact Test (DART) spacecraft crashed into Dimorphos, the moon of asteroid (65803) Didymos on September 26, 2022. The images comprising the sequences were obtained with the LICIACube Unit Key Explorer (LUKE) instrument on board the LICIACube spacecraft that flew by the Didymos system about 3 minutes after the impact event. Although the sequences are comprised of the same observations they are presented in different ways to emphasize various aspects of the ejecta field. These animations are intended as a supplement to the individual LUKE images, to provide insight and to help in the interpretation of the data in support of studies that address spatial and temporal changes in the DART ejecta field. Note that in some of the sequences, black sections may encroach in from the sides. These are gaps in the data where the asteroids moved to the edge of the camera's detector.Item APPLICATIONS OF ADVANCED STATISTICAL METHODS IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY(2015) Kumar, Sidharth; Gezari, Suvi; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The application of advanced statistical methods to astrophysical problems is desirable for reasons of time-efficiency, and robustness. A data-driven approach, when combined with physical insights, can expedite solutions to difficult problems, where data is aplenty, however, physical insights may be nebulous. This may be either due to the parametric complexities of the models assumed, or the inherent complexity in the behavior of the astrophysical system itself. In this thesis we demonstrate that, via the application of a variety of statistical tools to the Pan- STARRS1 medium-deep survey data, we solve two important classification problems faced by the survey. The Pan-STARRS1 (PS1) Survey is unique in terms of its temporal, spa- tial, and wavelength coverage, permitting extensive studies on known astrophysical sources such as active galactic nuclei (AGN) and supernovae (SNe), as well as ex- otic ones, such as tidal disruption events and recoiling supermassive black hole binaries. The Medium-Deep (MD) survey in particular offers a time resolution onthe order of a few days over 10 distinct 8 sq. deg. fields, or over 80 sq. deg. of sky, and with the technique of difference imaging, enables the detailed study of stochastic variations and explosive transients associated with extragalactic sources. In the first of two parts of this thesis, I outline a novel method for the light-curve characterization of Pan-STARRS1 Medium-Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SV) and burst-like (BL) transients, using multi- band difference-imaging time-series data. Using a combination of Bayesian leave- out-one-cross-validation and corrected-Akaike information criteria to model time- series in the four PS1 photometric bands g P 1 , r P 1 , i P 1 , and z P 1 , we use a k-means clustering decision algorithm to classify sources as bursting or stocastically variable with over 91% purity, based on spectroscopically confirmed AGN and SN verification samples. The performance of our classifier is comparable to the best among existing methods in terms of purity. We use our method to classify 4361 difference image sources with galaxy hosts in the PS1 MD fields as BL or SV, and then together with their host galaxy offsets, create a robust sample of AGN and SNe. From these variability-selected samples, we derive photometry and variability based priors that can be used in future survey data streams for near real-time classification. In the second part, I discuss the applications of a genetic algorithm optimized support vector machines or GA-SVM, machine learning classifier and regression tool, we developed to solve two important problems in astronomical surveys; a. star-galaxy classification where we show as proof of concept, the efficient separation of 11000 stars and galaxies in the MD fields using 32 photometric parameters de- rived from the PS1 MD stack [1]; and b. photometric redshift regression, where asproof of concept we predict with high accuracy, the photometric redshifts of 5000 galaxies in the COSMOS survey, based on 25 photometric parameters derived from the survey. We show that our GA-SVM method is more efficient as compared to ex- isting methods for star-galaxy classification, and more robust than existing methods for photometric redshift estimation.Item An Assessment of Professional Development for Astronomy and Physics Faculty: Expanding Our Vision of How to Support Faculty's Learning About Teaching(2016) Olmstead, Alice Rose; Turpen, Chandra A; Richardson, Derek C; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this thesis, we will explore approaches to faculty instructional change in astronomy and physics. We primarily focus on professional development (PD) workshops, which are a central mechanism used within our community to help faculty improve their teaching. Although workshops serve a critical role for promoting more equitable instruction, we rarely assess them through careful consideration of how they engage faculty. To encourage a shift towards more reflective, research-informed PD, we developed the Real-Time Professional Development Observation Tool (R-PDOT), to document the form and focus of faculty's engagement during workshops. We then analyze video-recordings of faculty's interactions during the Physics and Astronomy New Faculty Workshop, focusing on instances where faculty might engage in pedagogical sense-making. Finally, we consider insights gained from our own local, team-based effort to improve a course sequence for astronomy majors. We conclude with recommendations for PD leaders and researchers.Item Astrophotonic Spectrographs(MDPI, 2019-01-15) Gatkine, Pradip; Veilleux, Sylvain; Dagenais, MarioAstrophotonics is the application of photonic technologies to channel, manipulate, and disperse light from one or more telescopes to achieve scientific objectives in astronomy in an efficient and cost-effective way. Utilizing photonic advantage for astronomical spectroscopy is a promising approach to miniaturizing the next generation of spectrometers for large telescopes. It can be primarily attained by leveraging the two-dimensional nature of photonic structures on a chip or a set of fibers, thus reducing the size of spectroscopic instrumentation to a few centimeters and the weight to a few hundred grams. A wide variety of astrophotonic spectrometers is currently being developed, including arrayed waveguide gratings (AWGs), photonic echelle gratings (PEGs), and Fourier-transform spectrometer (FTS). These astrophotonic devices are flexible, cheaper to mass produce, easier to control, and much less susceptible to vibrations and flexure than conventional astronomical spectrographs. The applications of these spectrographs range from astronomy to biomedical analysis. This paper provides a brief review of this new class of astronomical spectrographs.Item ATMOSPHERIC CHARACTERIZATION OF GIANT EXOPLANETS IN EXTREME ENVIRONMENTS(2017) Wilkins, Ashlee Noelle; Deming, Leo D; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The study of planets around other stars has entered a science-rich era of characterization, in which detailed information about individual planets can be inferred from observations beyond discovery and confirmation, which only yield bulk properties like mass or radius. Characterization probes more revealing quantities such as chemical abundances, albedo, and temperature/pressure profiles, allowing us to address larger questions of planet formation mechanisms, planetary evolution, and, eventually, presence of biosignature gases. The primary method for characterization of close-in planets is transit spectroscopy. My dissertation comprises transiting exoplanet case studies using the Hubble Space Telescopes Wide-Field Camera-3 (HST/WFC3) as a tool of exoplanet characterization in a near-infrared band dominated by broad water absorption. Much of my efforts went toward a characterization of the WFC3 systematic effects that must be mitigated to extract the incredibly small (tens to 200 parts per million) signals. The case study subjects in this dissertation are CoRoT-2b (in emission), WASP-18b (in transmission and emission), and HATS-7b (in transmission), along with some partial/preliminary analyses of HAT-p-3b and HD 149026b (both in transmission). I also present an analysis of transit timing of WASP-18b with HST and other observatories as another clue to its evolution as a close-in, extremely massive planet purported to be spiraling in to its host star. The five planets range from super Neptunes to Super-Jupiter in size/mass. The observability of such planets – i.e. giants across a continuum of mass/size in extreme local environments close to their respective host stars, – is a unique opportunity to probe planet formation and evolution, as well as atmospheric structures in a high-irradiation environment. This genre of observations reveal insights into aerosols in the atmosphere; clouds and/or hazes can significantly impact atmospheric chemistry and observational signatures, and the community must better understand the phenomenon of aerosols in advance of the next generation of space observatories, including JWST and WFIRST. In conducting these case studies as part of larger collaborations and HST observing campaigns, my work aids in the advancement of exoplanet atmosphere characterization from single, planetby-planet, case studies, to an understanding of the large, hot, gaseous planets as a population.Item The Balance of Dark and Luminous Mass in Rotating Galaxies(Copyright 2005 The American Physical Society, 2005) McGaugh, Stacy S.baryons to the total rotation velocity increases, the contribution of the dark matter decreases by a compensating amount. This poses a fine-tuning problem for CDM galaxy formation models, and may point to new physics for dark matter particles or even a modification of gravity.Item Benchmarking Charge Exchange Theory in the Dawning Era of Space-Borne High-Resolution X-ray Spectrometers(2017) Betancourt-Martinez, Gabriele; Reynolds, Christopher; Porter, Frederick S; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Charge Exchange (CX) is a process in which a highly charged ion captures one or more electrons from a neutral atom or molecule into an excited state during a close interaction. The electron's subsequent radiative cascade to the ground state produces diagnostic line emission in the X-ray band. CX with solar wind ions occurs frequently in the solar system, and CX may also occur astrophysically. In order to properly identify CX in astrophysical spectra and make use of its diagnostic properties, we must be able to model the emission. Theoretical treatments of CX are often computationally expensive, experimental benchmarks at high resolution are fairly scarce, and there is often poor agreement between the two. This dissertation seeks to build a better understanding of the mechanics and spectral signatures of CX through high-resolution experimental data paired with theoretical calculations of CX. Chapter 1 outlines the necessary ingredients for modeling and identifying CX spectra, describes several astrophysical environments in which CX has been observed or postulated to occur, and presents some of the challenges we are facing in identifying and understanding this emission. Chapter 2 describes the theoretical and computational tools used in this work. Chapter 3 discusses the experimental tools and facilities we use, namely an Electron Beam Ion Trap (EBIT) and an X-ray microcalorimeter. Chapter 4 presents experimental K-shell data that highlights both the subtle nature of the CX interaction and the difficulty in including those nuances in spectral synthesis codes. Chapter 5 presents the first high-resolution L-shell CX spectra of Ne-like Ni and describes what we can learn from these results. In Chapter 6, we take these data a step further and present a pipeline to calculate relative state-selective capture cross sections, previously only available from theoretical modeling. We then compare some of our results to theory. In Chapter 7, we discuss several future steps for our work.Item BETTII: A pathfinder for high angular resolution observations of star-forming regions in the far-infrared(2016) Rizzo, Maxime Jean; Mundy, Lee G; Rinehart, Stephen A; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this thesis, we study clustered star formation in nearby star clusters and discuss how high angular resolution observations in the far-infrared regime could help us understand these important regions of stellar birth. We use the increased angular resolution from the FORCAST instrument on the SOFIA airborne observatory to study 10 nearby star-forming regions, and discuss the physical properties of sources in these regions that we can infer from radiative transfer modeling using these new observations. We discuss the design of BETTII, a pathfinder balloon-borne interferometer which will provide significantly better angular resolution in the far-infrared regime, and pave the way for future space-borne observatories. We elaborate on the details of BETTII's core technique, called Double-Fourier interferometry, and how to accurately compute the sensitivity of instruments which use this technique. Finally, we show our design and implementation results of the control and attitude estimation system for the BETTII payload, which poses unique challenges as an interferometer on a balloon platform.Item Black Hole Dynamics and Gravitational Radiation in Galactic Nuclei(2009) Lauburg, Vanessa; Miller, Michael C.; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this dissertation, we present new channels for the production of gravitational radiation sources: mergers of black holes in the nuclear star clusters found in many small galaxies, and mergers and tidal separations of black hole binaries in galaxies that host supermassive black holes. Mergers between stellar-mass black holes will be key sources of gravitational radiation for ground-based detectors. However, the rates of these events are highly uncertain, because we can not observe these binaries electromagnetically. In this work, we show that the nuclear star clusters found in the centers of small galaxies are conducive environments for black hole mergers. These clusters have large escape velocities, high stellar densities, and large numbers of black holes that will have multiple close encounters, which often lead to mergers. We present simulations of the three-body dynamics of black holes in this environment and estimate that, if many nuclear star clusters do not have supermassive black holes, tens of events per year will be detectable with Advanced LIGO. Larger galaxies that host supermassive black holes can produce extreme-mass ratio inspiral (EMRI) events, which are important sources for the future space-based detector, LISA. Here, we show that tidal separation of black hole binaries by supermassive black holes will produce a distinct class of EMRIs with near-zero eccentricities, and we estimate that rates from tidal separation could be comparable to or larger than those from the traditionally-discussed two-body capture formation scenario. Before tidal separation can occur, a binary encounters multiple stars as it sinks through the nucleus toward the supermassive black hole. In this region, velocities are high, and interactions with stars can destroy binaries through ionization. We investigate wide ranges in initial mass function and internal energy of the binaries, and find that tidal separations, mergers, and ionizations are all likely outcomes for binaries near the galactic center. Tidally separated binaries will contribute to the LISA detection rate, and mergers will produce tens of events per year for Advanced LIGO. We show, therefore, that galactic nuclei are promising hosts of gravitational wave sources for both LISA and LIGO.Item BROADBAND OBSERVATIONS OF GAMMA-RAY BURSTS AND FAST RADIO BURSTS: ENERGETICS, AFTERGLOWS, AND PHYSICAL ORIGINS(2021) Cunningham, Virginia Anne; Cenko, S. Bradley; Vogel, Stuart; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Long gamma-ray bursts (GRBs) are produced during the deaths of massive stars. They are the most powerful explosions known in the Universe and release most of their energy via a narrow cone of emission. The long-lived afterglows of the brightest GRBs detected by the \textit{Fermi} Large Area Telescope (LAT) are visible from radio to gamma-rays, and this relative abundance of broadband data makes them excellent tools for constraining theoretical models regarding their origins. Here, we use our sample of bright GRBs to test emission models beyond the canonical on-axis, top-hat jet model which has historically been applied throughout the literature. We demonstrate that many GRBs are likely to produce emission via a structured jet. We also find that derived physical parameters are highly dependent upon the fraction, $\xi$, of electrons which contribute to the synchrotron emission. Our findings for $\xi$ are contrary to what is generally assumed during GRB modeling ($\xi=1.0$), but consistent with theoretical simulations which predict lower values. Lower predictions for $\xi$ would impact our current understanding of GRBs, implying denser environments and higher energetics than commonly assumed. Fast radio bursts (FRBs) are extremely bright, short-duration pulses at radio frequencies that were only confirmed as true astrophysical sources a decade ago. Although the field has experienced major leaps in recent years, many questions regarding their progenitors and emission processes remain. The identification of counterparts at higher energies is critical to understanding the physical origins of FRBs. Here, we report on an archival search of previously identified FRBs with the \textit{Fermi} Gamma-ray Burst Monitor (GBM), the \textit{Fermi}-LAT, and the \textit{Swift} Burst Alert Telescope (BAT). We find no significant X-ray or gamma-ray counterparts but report upper limits on the high-energy fluence, $f_{\gamma}$, for each FRB in our sample. We also report lower limits on the ratio of radio to high-energy fluence ($\nicefrac{f_{r}}{f_{\gamma}}$). We discuss the implications of our results on several FRB progenitor theories, including pulsar-like analogs and magnetar flares.Item The CARMA 3 mm Survey of the Inner 0.7 x 0.4 degrees of the Central Molecular Zone(2017) Pound, Marc; Yusef-Zadeh, FarhadThe Central Molecular Zone (CMZ) of the Galactic Center has to date only been fully mapped at mm wavelengths with singledish telescopes, with resolution about 30 arcseconds (1.2 pc). Using the Combined Array for Research in Millimeter Astronomy (CARMA), we mapped the innermost 0.25 square degrees of the CMZ over the region between -0.2 < l < 0.5 degrees and -0.2 < b < 0.2 degrees (90 x 50 pc) with spatial and spectral resolution of 10 arcseconds (0.4 pc) and 2.5 km/s, respectively. We provide a catalog of 3 mm continuum sources as well as spectral line images of SiO(J=2-1), HCO+(J=1-0), HCN(J=1-0), N2H+(J=1-0), and CS(J=2-1) , with velocity coverage VLSR= -200 to 200 km/s To recover the large scale structure resolved out by the interferometer, the continuum-subtracted spectral line images were combined with data from the Mopra 22-m telescope survey, thus providing maps containing all spatial frequencies down to the resolution limit. We find that integrated intensity ratio of I(HCN)/I(HCO+) is anti-correlated with the intensity of the 6.4 keV Fe Kalpha, which is excited either by high energy photons or low energy cosmic rays, and the gas velocity dispersion as traced by HCO+ is correlated with Fe Kalpha intensity. The intensity ratio and velocity dispersion patterns are consistent with variation expected from the interaction of low energy cosmic rays with molecular gas.Item Case Studies in AGN Feedback(2022) Smith, Robyn N; Reynolds, Christopher S; Veilleux, Sylvain; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Galaxies in which the central supermassive black hole (SMBH) is actively accreting are referred to as active galactic nuclei (AGN) and are believed to play a crucial role in the evolution of both individual and clusters of galaxies. Empirically, the mass of the host galaxy and the mass of the SMBH are positively correlated. This is somewhat surprising given that the gravitational sphere of influence of the SMBH is orders or magnitude smaller than the host galaxy. The SMBH is believed to undergo periods of activity during which it is capable of powering galactic-scale outflows which in turn modulate star formation and therefore the overall mass of the host galaxy. Such processes are broadly referred to as feedback.Clusters of galaxies are the largest gravitationally bound systems in the universe. The intracluster medium (ICM) in relaxed clusters is strongly centrally peaked and suffi- ciently dense that it is expected to cool rapidly (in cosmological terms). Such cooling should create streams of cool gas flowing to the brightest cluster galaxy (BCG) which in turn should fuel high rates of star formation. Little evidence of either has been found giving rise to the ‘cooling flow problem’. AGN are again invoked to explain the absence of this cooling flow. The BCGs hosting AGN, often with powerful radio jets, are believed to inject energy into the ICM at a rate which can counteract the cooling. This cyclical nature of balancing the cooling is another form of AGN feedback. In this thesis, we present case studies of three AGN which provide unique insight into these feedback processes. Chapter 2 presents evidence for a relativistic X-ray driven outflow on accretion disk scales in an ultraluminous infrared galaxy known to host a galactic-scale molecular outflow. The observational properties which make a galaxy an ideal candidate for detection of large-scale outflows are intrinsically at odd with the properties which are ideal for detecting small-scale outflows. IRASF05189-2524, the subject of Chapter 2, is one of only a handful of galaxies for which positive detection of outflows on both small- and large-scale exist. Next, we turn our attention to AGN in BCGs and the cooling flow problem. Chapter 3 presents new Chandra observations of NGC 1275, the BCG in the famous Perseus Cluster. The high-cadence observing campaign finds X-ray variability on short intraweek timescales. The inclusion of archival observations reveals a general ‘harder when brighter’ trend. Examination of multiwavelength light curves finds a strongly correlated optical and γ-ray flare in late 2015 in which the optical emission leads the γ-ray emission by ~5 days. This robust (> 3σ) result is the first strong evidence of correlated emission with a time delay and is lends support to the idea that the γ-ray emission is produced by synchrotron self-Compton upscattering. In Chapter 4, we present new Chandra observations of the rare radio-quiet BCG quasar H1821+643. It is one of only two examples in the nearby universe of a highly luminous quasar with minimal radio jet activity at the center of a galaxy cluster. Despite observational challenges, we produce the first high-resolution spectrum of the quasar well-separated from the ICM in ~20 years. Our short-cadence observing campaign again reveals rapid variation on timescales corresponding to the light crossing time of the accretion disk. Although the flux varies, the spectrum is remarkably constant when compared to observations from previous decades. The result of this thesis is to add to the existing body of knowledge of AGN feedback on both galaxy and galaxy cluster scales. These three AGN presented various observing challenges which required a combination of non-standard observational techniques and data reduction methods in order to maximize results with current X-ray instrumentation.