Astronomy

Permanent URI for this communityhttp://hdl.handle.net/1903/2215

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Soft X-Ray Imaging of Earth's Dayside Magnetosheath and Cusps Using Hybrid Simulations
    (Wiley, 2023-05-11) Ng, J.; Walsh, B.M.; Chen, L.-J.; Omelchenko, Y.
    Interactions between solar wind ions and neutral hydrogen atoms in Earth's exosphere can lead to the emission of soft X-rays. Upcoming missions such as SMILE and LEXI aim to use soft X-ray imaging to study the global structure of the magnetosphere. Although the magnetosheath and dayside magnetopause can often be driven by kinetic physics, it has typically been omitted from fluid simulations used to predict X-ray emissions. We study the possible results of soft X-ray imaging using hybrid simulations under quasi-radial interplanetary magnetic fields, where ion-ion instabilities drive ultra-low frequency foreshock waves, leading to turbulence in the magnetosheath, affecting the dynamics of the cusp and magnetopause. We simulate soft X-ray emission to determine what may be seen by missions such as LEXI, and evaluate the possibility of identifying kinetic structures. While kinetic structures are visible in high-cadence imaging, current instruments may not have the time resolution to discern kinetic signals.
  • Thumbnail Image
    Item
    Temporal, Spatial, and Velocity-Space Variations of Electron Phase Space Density Measurements at the Magnetopause
    (Wiley, 2023-03-21) Shuster, J. R.; Gershman, D. J.; Giles, B. L.; Bessho, N.; Sharma, A. S.; Dorelli, J. C.; Uritsky, V.; Schwartz, S. J.; Cassak, P. A.; Denton, R. E.; Chen, L.-J.; Gurram, H.; Ng, J.; Burch, J.; Webster, J.; Torbert, R.; Paterson, W. R.; Schiff, C.; Viñas, A. F.; Avanov, L. A.; Stawarz, J.; Li, T. C.; Liu, Y.-H.; Argall, M. R.; Afshari, A.; Payne, D. S.; Farrugia, C.J.; Verniero, J.; Wilder, F.; Genestreti, K.; da Silva, D. E.
    Temporal, spatial, and velocity-space variations of electron phase space density are measured observationally and compared for the first time using the four magnetospheric multiscale (MMS) spacecraft at Earth's magnetopause. Equipped with these unprecedented spatiotemporal measurements offered by the MMS tetrahedron, we compute each term of the electron Vlasov equation that governs the evolution of collisionless plasmas found throughout the universe. We demonstrate how to use single spacecraft measurements to improve the resolution of the electron pressure gradient that supports nonideal parallel electric fields, and we develop a model to intuit the types of kinetic velocity-space signatures that are observed in the Vlasov equation terms. Furthermore, we discuss how the gradient in velocity-space sheds light on plasma energy conversion mechanisms and wave-particle interactions that occur in fundamental physical processes such as magnetic reconnection and turbulence.
  • Thumbnail Image
    Item
    Hybrid Simulations of the Cusp and Dayside Magnetosheath Dynamics Under Quasi-Radial Interplanetary Magnetic Fields
    (Wiley, 2022-10-17) Ng, J.; Chen, L.-J.; Omelchenko, Y.; Zou, Y.; Lavraud, B.
    Under quasi-radial interplanetary magnetic fields (IMF), foreshock turbulence can have an impact on the magnetosheath and cusps depending on the location of the quasi-parallel shock. We perform three-dimensional simulations of Earth's dayside magnetosphere using the hybrid code HYPERS, and compare northward and southward quasi-radial IMF configurations. We study the magnetic field configuration, fluctuations in the magnetosheath and the plasma in the regions around the northern cusp. Under northward IMF with Earthward Bx, there is a time-varying plasma depletion layer immediately outside the northern cusp. In the southward IMF case, the impact of foreshock turbulence and high-speed jets, together with magnetopause reconnection, can lead to strong density enhancements in the cusp.
  • Thumbnail Image
    Item
    Electron-Scale Reconnection in Three-Dimensional Shock Turbulence
    (Wiley, 2022-08-11) Ng, J.; Chen, L.-J.; Bessho, N.; Shuster, J.; Burkholder, B.; Yoo, J.
    Magnetic reconnection has been observed in the transition region of quasi-parallel shocks. In this work, the particle-in-cell method is used to simulate three-dimensional reconnection in a quasi-parallel shock. The shock transition region is turbulent, leading to the formation of reconnecting current sheets with various orientations. Two reconnection sites with weak and strong guide fields are studied, and it is shown that reconnection is fast and transient. Reconnection sites are characterized using diagnostics including electron flows and magnetic flux transport. In contrast to two-dimensional simulations, weak guide field reconnection is realized. Furthermore, the current sheets in these events form in a direction almost perpendicular to those found in two-dimensional simulations, where the reconnection geometry is constrained.