Astronomy
Permanent URI for this communityhttp://hdl.handle.net/1903/2215
Browse
Item Case Studies in AGN Feedback(2022) Smith, Robyn N; Reynolds, Christopher S; Veilleux, Sylvain; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Galaxies in which the central supermassive black hole (SMBH) is actively accreting are referred to as active galactic nuclei (AGN) and are believed to play a crucial role in the evolution of both individual and clusters of galaxies. Empirically, the mass of the host galaxy and the mass of the SMBH are positively correlated. This is somewhat surprising given that the gravitational sphere of influence of the SMBH is orders or magnitude smaller than the host galaxy. The SMBH is believed to undergo periods of activity during which it is capable of powering galactic-scale outflows which in turn modulate star formation and therefore the overall mass of the host galaxy. Such processes are broadly referred to as feedback.Clusters of galaxies are the largest gravitationally bound systems in the universe. The intracluster medium (ICM) in relaxed clusters is strongly centrally peaked and suffi- ciently dense that it is expected to cool rapidly (in cosmological terms). Such cooling should create streams of cool gas flowing to the brightest cluster galaxy (BCG) which in turn should fuel high rates of star formation. Little evidence of either has been found giving rise to the ‘cooling flow problem’. AGN are again invoked to explain the absence of this cooling flow. The BCGs hosting AGN, often with powerful radio jets, are believed to inject energy into the ICM at a rate which can counteract the cooling. This cyclical nature of balancing the cooling is another form of AGN feedback. In this thesis, we present case studies of three AGN which provide unique insight into these feedback processes. Chapter 2 presents evidence for a relativistic X-ray driven outflow on accretion disk scales in an ultraluminous infrared galaxy known to host a galactic-scale molecular outflow. The observational properties which make a galaxy an ideal candidate for detection of large-scale outflows are intrinsically at odd with the properties which are ideal for detecting small-scale outflows. IRASF05189-2524, the subject of Chapter 2, is one of only a handful of galaxies for which positive detection of outflows on both small- and large-scale exist. Next, we turn our attention to AGN in BCGs and the cooling flow problem. Chapter 3 presents new Chandra observations of NGC 1275, the BCG in the famous Perseus Cluster. The high-cadence observing campaign finds X-ray variability on short intraweek timescales. The inclusion of archival observations reveals a general ‘harder when brighter’ trend. Examination of multiwavelength light curves finds a strongly correlated optical and γ-ray flare in late 2015 in which the optical emission leads the γ-ray emission by ~5 days. This robust (> 3σ) result is the first strong evidence of correlated emission with a time delay and is lends support to the idea that the γ-ray emission is produced by synchrotron self-Compton upscattering. In Chapter 4, we present new Chandra observations of the rare radio-quiet BCG quasar H1821+643. It is one of only two examples in the nearby universe of a highly luminous quasar with minimal radio jet activity at the center of a galaxy cluster. Despite observational challenges, we produce the first high-resolution spectrum of the quasar well-separated from the ICM in ~20 years. Our short-cadence observing campaign again reveals rapid variation on timescales corresponding to the light crossing time of the accretion disk. Although the flux varies, the spectrum is remarkably constant when compared to observations from previous decades. The result of this thesis is to add to the existing body of knowledge of AGN feedback on both galaxy and galaxy cluster scales. These three AGN presented various observing challenges which required a combination of non-standard observational techniques and data reduction methods in order to maximize results with current X-ray instrumentation.Item Dust and Molecular Gas in the Winds of Nearby Galaxies(2015) McCormick, Alexander; Veilleux, Sylvain; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Galactic winds provide a fundamental mechanism for galaxy evolution. The outflow of material in winds remains the most likely culprit responsible for a host of galaxy observations, plus mounting evidence for galactic winds at times in the past points to their importance in understanding the history of the universe. Therefore, detailed observations of galactic winds are critical to fleshing out the narrative of galaxy evolution. In particular, the dust and molecular gas of a galaxy's interstellar medium (ISM) play crucial roles in the absorption, scattering, and reemission of starlight, the heating of the ISM, and provide critical materials for star formation. We present results from archival {\em Spitzer Space Telescope} data and exceptionally deep {\em Herschel Space Observatory} data of the dust and molecular gas found in and around 20 nearby galaxies known to host galactic-scale winds. Selecting nearby galaxies has allowed us the resolution and sensitivity to differentiate dust and molecular gas outside the galaxies and observe their typically faint emission. These are the most detailed surveys currently available of the faint dust and molecular gas components in galactic winds, and we have utilized them to address the following questions: i) What are the location and morphology of dust and molecular gas, and how do these components compare with better known neutral and ionized gas features? ii) How much do dust and molecular gas contribute to the mass and energy of galactic winds? iii) Do the properties of the dust and molecular gas correlate with the properties of the wind-hosting galaxy? {\em Spitzer} archival data has revealed kiloparsec-scale polycyclic aromatic hydrocarbon (PAH) structures in the extraplanar regions of nearly all the wind-hosting galaxies we investigated. We found a nearly linear correlation between the extraplanar PAH emission and the total infrared flux, a proxy for star formation. Our results also suggest a correlation between the height of extraplanar PAH emission and star formation rate surface density, supporting the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material. New, very deep {\em Herschel} data of six nearby dwarf galaxies with known winds show circumgalactic cold dust features on galactic scales, often well beyond the stellar component. Comparisons of these features with ancillary data show an imperfect spatial correlation with the ionized gas and warm dust wind components. We found $\sim$10-20\% of the total dust mass in these known wind galaxies resides outside their stellar disks, and $\sim$70\% in one case. Our data also hint at metallicity depletion via cold dust ejection and possible correlations of dust and other host galaxy properties, though these tantalizing implications are not statistically significant given the small number of objects in the sample and the uncertainties in the measurements.Item The Star-Forming Properties of an Ultra-Hard X-ray Selected Sample of AGN(2016) Shimizu, Thomas Taro; Mushotzky, Richard; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This thesis provides a comprehensive examination of star formation in the host galaxies of active galactic nuclei or AGN. AGN are bright, central regions of galaxies that are powered through accretion onto a supermassive black hole (SMBH). Through accretion and the loss of gravitational potential energy, AGN emit powerful radiation over all wavelengths of the electromagnetic spectrum. This radiation can influence the AGN's host galaxy through what is known as AGN ``feedback'' and is thought to suppress star formation as well as stop accretion onto the SMBH leading to a co-evolution between the SMBH and its host galaxy. Theoretical models have long invoked AGN feedback to be able reproduce the galaxy population we see today but observations have been unclear as to whether AGN actually have an effect on star formation. To address this question, we selected a large sample of local ($z < 0.05$) AGN based on their detection at ultra-hard X-ray energies (14--195 keV) with the \textit{Swift} Burst Alert Telescope (BAT). Ultra-hard X-ray selection frees our sample from selection effects and biases due to obscuration and host galaxy contamination that can hinder other AGN samples. With these 313 BAT AGN we conducted a far-infrared survey using the \herschel \textit{Space Observatory}. We use the far-infrared imaging to probe the cold dust that traces recent star formation in the galaxy and construct spectral energy distributions (SEDs) from 12--500 \micron. We decompose the SEDs to remove the AGN contribution and measure infrared luminosity which provides us with robust estimates of the star formation rate (SFR). Through a comparison with a stellar-mass matched non-AGN sample, we find that AGN host galaxies have larger dust masses, dust temperatures, and SFRs, confirming the results of previous studies that showed the optical colors of the BAT AGN are bluer than non-AGN. We find that the AGN luminosity as probed by the 14--195 keV luminosity is not related to the SFR of the host galaxy suggesting global, large scale star formation on an individual basis is not affected by the AGN. However, after a thorough analysis comparing our AGN to star-forming main sequence, a tight relationship between the SFR and stellar mass of a galaxy, we discover that our AGN as a whole show systematically lower specific SFRs (SFR/stellar mass). We confirm that AGN host galaxies, as a population, are transitioning between the star-forming and quiescent populations. This result supports the theory that AGN feedback has suppressed star formation, but we also consider other models that could reproduce our observations. Finally we conclude with a summary of this thesis and describe several ongoing and future projects that will push forward the exciting field of AGN research.