A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
2 results
Search Results
Item Characterization of aerosol plumes from singing and playing wind instruments associated with the risk of airborne virus transmission(Wiley, 2022-06-13) Wang, Lingzhe; Lin, Tong; Da Costa, Hevander; Zhu, Shengwei; Stockman, Tehya; Kumar, Abhishek; Weaver, James; Spede, Mark; Milton, Donald K.; Hertzberg, Jean; Toohey, Darin W.; Vance, Marina E.; Miller, Shelly L.; Srebric, JelenaThe exhalation of aerosols during musical performances or rehearsals posed a risk of airborne virus transmission in the COVID-19 pandemic. Previous research studied aerosol plumes by only focusing on one risk factor, either the source strength or convective transport capability. Furthermore, the source strength was characterized by the aerosol concentration and ignored the airflow rate needed for risk analysis in actual musical performances. This study characterizes aerosol plumes that account for both the source strength and convective transport capability by conducting experiments with 18 human subjects. The source strength was characterized by the source aerosol emission rate, defined as the source aerosol concentration multiplied by the source airflow rate (brass 383 particle/s, singing 408 particle/s, and woodwind 480 particle/s). The convective transport capability was characterized by the plume influence distance, defined as the sum of the horizontal jet length and horizontal instrument length (brass 0.6 m, singing 0.6 m and woodwind 0.8 m). Results indicate that woodwind instruments produced the highest risk with approximately 20% higher source aerosol emission rates and 30% higher plume influence distances compared with the average of the same risk indicators for singing and brass instruments. Interestingly, the clarinet performance produced moderate source aerosol concentrations at the instrument’s bell, but had the highest source aerosol emission rates due to high source airflow rates. Flute performance generated plumes with the lowest source aerosol emission rates but the highest plume influence distances due to the highest source airflow rate. Notably, these comprehensive results show that the source airflow is a critical component of the risk of airborne disease transmission. The effectiveness of masking and bell covering in reducing aerosol transmission is due to the mitigation of both source aerosol concentrations and plume influence distances. This study also found a musician who generated approximately five times more source aerosol concentrations than those of the other musicians who played the same instrument. Despite voice and brass instruments producing measurably lower average risk, it is possible to have an individual musician produce aerosol plumes with high source strength, resulting in enhanced transmission risk; however, our sample size was too small to make generalizable conclusions regarding the broad musician population.Item SCHLIEREN SEQUENCE ANALYSIS USING COMPUTER VISION(2013) Smith, Nathanial Timothy; Lewis, Mark J; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Computer vision-based methods are proposed for extraction and measurement of flow structures of interest in schlieren video. As schlieren data has increased with faster frame rates, we are faced with thousands of images to analyze. This presents an opportunity to study global flow structures over time that may not be evident from surface measurements. A degree of automation is desirable to extract flow structures and features to give information on their behavior through the sequence. Using an interdisciplinary approach, the analysis of large schlieren data is recast as a computer vision problem. The double-cone schlieren sequence is used as a testbed for the methodology; it is unique in that it contains 5,000 images, complex phenomena, and is feature rich. Oblique structures such as shock waves and shear layers are common in schlieren images. A vision-based methodology is used to provide an estimate of oblique structure angles through the unsteady sequence. The methodology has been applied to a complex flowfield with multiple shocks. A converged detection success rate between 94% and 97% for these structures is obtained. The modified curvature scale space is used to define features at salient points on shock contours. A challenge in developing methods for feature extraction in schlieren images is the reconciliation of existing techniques with features of interest to an aerodynamicist. Domain-specific knowledge of physics must therefore be incorporated into the definition and detec- tion phases. Known location and physically possible structure representations form a knowledge base that provides a unique feature definition and extraction. Model tip location and the motion of a shock intersection across several thousand frames are identified, localized, and tracked. Images are parsed into physically meaningful labels using segmentation. Using this representation, it is shown that in the double-cone flowfield, the dominant unsteady motion is associated with large scale random events within the aft-cone bow shock. Small scale organized motion is associated with the shock-separated flow on the fore-cone surface. We show that computer vision is a natural and useful extension to the evaluation of schlieren data, and that segmentation has the potential to permit new large scale measurements of flow motion.