A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
2 results
Search Results
Item Mesenchymal Stem Cell Culture within Perfusion Bioreactors Incorporating 3D-Printed Scaffolds Enables Improved Extracellular Vesicle Yield with Preserved Bioactivity(Wiley, 2023-03-17) Kronstadt, Stephanie M.; Patel, Divya B.; Born, Louis J.; Levy, Daniel; Lerman, Max J.; Mahadik, Bhushan; McLoughlin, Shannon T.; Fasuyi, Arafat; Fowlkes, Lauren; Van Heyningen, Lauren Hoorens; Aranda, Amaya; Abadchi, Sanaz Nourmohammadi; Chang, Kai-Hua; Hsu, Angela Ting Wei; Bengali, Sameer; Harmon, John W.; Fisher, John P.; Jay, Steven M.Extracellular vesicles (EVs) are implicated as promising therapeutics and drug delivery vehicles in various diseases. However, successful clinical translation will depend on the development of scalable biomanufacturing approaches, especially due to the documented low levels of intrinsic EV-associated cargo that may necessitate repeated doses to achieve clinical benefit in certain applications. Thus, here the effects of a 3D-printed scaffold-perfusion bioreactor system are assessed on the production and bioactivity of EVs secreted from bone marrow-derived mesenchymal stem cells (MSCs), a cell type widely implicated in generating EVs with therapeutic potential. The results indicate that perfusion bioreactor culture induces an ≈40-80-fold increase (depending on measurement method) in MSC EV production compared to conventional cell culture. Additionally, MSC EVs generated using the perfusion bioreactor system significantly improve wound healing in a diabetic mouse model, with increased CD31+ staining in wound bed tissue compared to animals treated with flask cell culture-generated MSC EVs. Overall, this study establishes a promising solution to a major EV translational bottleneck, with the capacity for tunability for specific applications and general improvement alongside advancements in 3D-printing technologies.Item Strategies for small RNA loading into extracellular vesicles(2022) Pottash, Alex; Jay, Steven M; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Small RNAs are an exciting class of therapeutics with significant untapped therapeutic potential, due to their ability to affect cell behavior at the RNA level. However, delivery of RNA is a challenge due to its size and labile nature. Extracellular vesicles (EVs) are promising as delivery vehicles due to their natural role as physiological intercellular microRNA transporters, and research has shown that EVs have significant advantages compared to competing technologies such as lipid nanoparticles. Specifically, EVs more readily transport through biological barriers, deliver RNA more efficiently, and are less immunogenic. However, intrinsic microRNA content in EVs is low and thus active small RNA loading strategies are needed to enable therapeutic use. Consequently, a variety of small RNA loading methods for EVs have been developed. These include endogenous and exogenous approaches. Exogenous approaches, in which EVs are loaded directly, have been shown to enable loading of hundreds to thousands of small RNAs per EV, but they are not readily amenable to scalable production processes. Endogenous approaches, in which EVs are loaded by upstream manipulation of the producer cell, are compatible with large scale EV production, but loading by these approaches is inconsistent and has scarcely been quantitatively analyzed. The work in this dissertation is focused on enabling small RNA therapeutics via EV delivery. The lack of an ideal small RNA loading approach for EVs is addressed by tackling important issues of both endogenous and exogenous loading. First, the loading capacity of several common endogenous loading methods was optimized and quantitatively analyzed. Additionally, new approaches to endogenous small RNA loading involving genetic manipulation of the RNA structure and the microRNA cellular processing pathway were developed and evaluated. Finally, exogenous loading via sonication was applied to enable delivery of a novel microRNA combination that was identified via a rational selection process. This combination of miR-146a, miR-155, and miR-223 was found to have potentially synergistic anti-inflammatory activity, and EV-mediated delivery of the combination opens the possibility for therapeutic application in inflammatory diseases and conditions such as sepsis. Overall, this work both improves understanding of current techniques for small RNA loading into EVs and opens new opportunities for advanced strategies, bringing EV-based small RNA therapeutics closer to clinical application.