A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    PREPARATION OF A NANOSUSPENSION OF THE PHOTOSENSITIZER VERTEPORFIN FOR PHOTODYNAMIC AND LIGHT-INDEPENDENT THERAPY IN GLIOBLASTOMA
    (2024) Quinlan, John Andrew; Huang, Huang-Chiao; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Photodynamic therapy (PDT) using verteporfin (VP) has treated ocular disease for over 20 years, but recent interest in VP’s light-independent properties has reignited interest in the drug, particularly in glioblastoma (GBM) (NCT04590664). Separate efforts to apply PDT to GBM using 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) have also garnered attention (NCT03048240), but, unfortunately, clinical trials using 5-ALA-induced PpIX-PDT have yet to yield a survival benefit. Previous studies have shown VP to be a superior PDT agent than 5-ALA-induced PpIX. Our lab has shown that 690 nm light activates VP up to 2 cm into the brain, while 635 nm light only activates PpIX at depths <1 cm into the brain. Additionally, VP is a more effective photosensitizer than PpIX because it has a higher singlet oxygen yield and is active in the vasculature as well as target tumor cells. However, the hydrophobicity of VP limits effective delivery of the drug to the brain for treatment of GBM.In this context, this thesis aims to re-evaluate the delivery method for VP. VP traditionally requires lipids for delivery as Visudyne. Recent shortages of Visudyne and potential drawbacks of liposomal carriers motivated our development of a carrier-free nanosuspension of VP, termed NanoVP. Previous work has shown that cellular uptake of VP is greater when delivered as NanoVP rather than liposomal VP, resulting in improved cell killing after light activation. This thesis builds on this previous work by (1) evaluating synthesis and storage parameters for NanoVP, (2) determining the pharmacokinetics, biodistribution, and brain bioavailability of NanoVP, and (3) evaluating the potential efficacy of NanoVP as a PDT and a chemotherapy agent, and by supporting development of a zebrafish model of the blood-brain barrier (BBB) for mechanistic studies of improved drug delivery to the brain.
  • Thumbnail Image
    Item
    Bioinspired One Cell Culture Isolates Highly Tumorigenic and Metastatic Cancer Stem Cells Capable of Multilineage Differentiation
    (Wiley, 2020-04-28) Wang, Hai; Agarwal, Pranay; Jiang, Bin; Stewart, Samantha; Liu, Xuanyou; Liang, Yutong; Hancioglu, Baris; Webb, Amy; Fisher, John P.; Liu, Zhenguo; Lu, Xiongbin; Tkaczuk, Katherine H. R.; He, Xiaoming
    Cancer stem cells (CSCs) are rare cancer cells that are postulated to be responsible for cancer relapse and metastasis. However, CSCs are difficult to isolate and poorly understood. Here, a bioinspired approach for label-free isolation and culture of CSCs, by microencapsulating one cancer cell in the nanoliter-scale hydrogel core of each prehatching embryo-like core–shell microcapsule, is reported. Only a small percentage of the individually microencapsulated cancer cells can proliferate into a cell colony. Gene and protein expression analyses indicate high stemness of the cells in the colonies. Importantly, the colony cells are capable of cross-tissue multilineage (e.g., endothelial, cardiac, neural, and osteogenic) differentiation, which is not observed for “CSCs” isolated using other contemporary approaches. Further studies demonstrate the colony cells are highly tumorigenic, metastatic, and drug resistant. These data show the colony cells obtained with the bioinspired one-cell-culture approach are truly CSCs. Significantly, multiple pathways are identified to upregulate in the CSCs and enrichment of genes related to the pathways is correlated with significantly decreased survival of breast cancer patients. Collectively, this study may provide a valuable method for isolating and culturing CSCs, to facilitate the understanding of cancer biology and etiology and the development of effective CSC-targeted cancer therapies.