A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Dynamics and Control of a Hovering Quadrotor in Wind
    (2019) Craig, William Stephen; Paley, Derek A; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Quadrotor helicopters show great promise for a variety of missions in commercial, military, and recreational domains. Many of these missions require flight outdoors where quadrotors struggle, partially due to their high susceptibility to wind gusts. This dissertation addresses the problem of quadrotor flight in wind with (1) a physics-based analysis of the interaction between the wind and the quadrotor, (2) the addition of flow sensing onboard the quadrotor to measure external wind, and (3) both linear and nonlinear control development incorporating flow sensing and taking aerodynamic interactions into account. Using flow measurements in addition to traditional IMU sensing enables the quadrotor to react to the wind directly, rather than delaying until the wind affects the rigid-body dynamics as with IMU sensing alone. The aerodynamic response of a quadrotor to wind is modeled using blade flapping, which characterizes the tilt of the rotor plane a result of uneven lift on the blades. The model is validated by mounting a motor and propeller to a spherical pendulum and subjecting it to a wind gust. The blade-flapping model is utilized in a nonlinear geometric feedback-linearization controller that is built in a cascaded framework, first developing the inner-loop attitude controller, then the outer-loop position controller. The controller directly cancels the forces and moments resulting from aerodynamic disturbances using measurements from onboard flow probes, and also includes a variable-gain algorithm to address the inherent thrust limitations on the motors. A linear model and controller is also developed, using frequency-domain system-identification techniques to characterize the model, and handling-qualities-criteria based optimization to select gains. A linear model of the aerodynamic interactions, based on the blade-flapping work, provides flow-feedback capability similar to the nonlinear controller. Experimental testing is performed for each of the developed controllers, all of which show improvement through the use of flow feedback. Attitude is tested independently by mounting the quadrotor on a ball-joint, allowing for both gust and saturation testing. Gust rejection is also tested for both linear and nonlinear controllers in free flight, showing further benefits than considering attitude alone.
  • Thumbnail Image
    Item
    UNDERSTANDING OF LOW REYNOLDS NUMBER AERODYNAMICS AND DESIGN OF MICRO ROTARY-WING AIR VEHICLES
    (2016) Winslow, Justin Michael; Chopra, Inderjit; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The goal of the present research is to understand aerodynamics at low Reynolds numbers and synthesize rules towards the development of hovering micro rotary-wing air vehicles (MRAVs). This entailed the rigorous study of airfoil characteristics at low Reynolds numbers through available experimental results as well as the use of an unsteady Reynolds-Averaged Navier-Stokes solver. A systematic, experimental, variation of parameters approach with physical rotors was carried out to design and develop a micro air vehicle-scale rotor which maximizes the hover Figure of Merit. The insights gained in low Reynolds number aerodynamics have been utilized in the systematic design of a high endurance micro-quadrotor. Based on available characteristics, the physical relations governing electric propulsion system and structural weights have been derived towards a sizing methodology for small-scale rotary-wing vehicles.
  • Thumbnail Image
    Item
    Quaternion-Based Control for Aggressive Trajectory Tracking with a Micro-Quadrotor UAV
    (2014) Kehlenbeck, Andrew Gale; Humbert, James S; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    With potential missions for quadrotor micro-air vehicles (MAVs) calling for smaller, more agile vehicles, it is important to implement attitude controllers that allow the vehicle to reach any desired attitude without encountering computational singularities, as is the case when using an Euler angle representation. A computationally efficient quaternion-based state estimator is presented that enables the Army Research Laboratory's (ARL) 100-gram micro-quadrotor to determine its attitude during agile maneuvers using only an on-board gyroscope and accelerometer and a low-power processor. Inner and outer loop attitude and position controllers are also discussed that use the quaternion attitude representation to control the vehicle along aggressive trajectories with the assistance of an outside motion capture system. A trajectory generation algorithm is then described that leverages the quadrotor's inherent dynamics to allow it to reach extreme attitudes for applications such as perching on walls or ceilings and flying through small openings.
  • Thumbnail Image
    Item
    Open Loop System Identificaiton of a Micro Quadrotor Helicopter from Closed Loop Data
    (2011) Miller, Derek; Humbert, James S; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Quadrotors are a favorite platform amongst academic researchers. Yet there is limited work present on the identification of Linear Time Invariant (LTI) state space models for quadrotors. This thesis focuses on the development of a 70 gram quadrotor with a maximum dimension of less than 6 inches. An MAV this small is extremely agile and in this case, dynamically unstable. Therefore it requires an active control scheme to stabilize the vehicle's attitude. To develop an effective controller using the vast array of available linear control tools, model knowledge is required. The scope of this thesis is to identify an LTI state space model of the 70 gram quadrotor mentioned about hover. Because the quadrotor is unstable, it cannot be flown without some form of feedback control present. To determine the bare airframe dynamics of a closed loop system, the feedback gains must be turned down as low as possible so as to not distort the natural response. Then the bare airframe dynamics can be calculated from the identified closed loop dynamics if the feedback gains and control law are known. Using the derived open loop system this thesis presents options for controller development for both a stabilizing inner loop, and a station keeping outer loop controller.