A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
3 results
Search Results
Item Private Information Retrieval and Security in Networks(2018) Banawan, Karim; Ulukus, Sennur; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation focuses on privacy and security issues in networks from an information-theoretic perspective. Protecting privacy requires protecting the identity of the desired message from the data source. This is highly desirable in next-generation networks, where data-mining techniques are present everywhere. Ensuring security requires that the data content is not interpretable by non-authorized nodes. This is critical in wireless networks, which are inherently open. We first focus on the privacy issue by investigating the private information retrieval (PIR) problem. PIR is a canonical problem to study the privacy of the downloaded content from public databases. In PIR, a user wishes to retrieve a file from distributed databases, in such a way that no database can know the identity of the user's desired file. PIR schemes need to be designed to be more efficient than the trivial scheme of downloading all the files stored in the databases. Fundamentally, PIR lies at the intersection of computer science, information theory, coding theory, and signal processing. The classical PIR formulation makes the following assumptions: The content is exactly replicated across the databases; the user wishes to retrieve a single file privately; the databases do not collude; the databases answer the user queries truthfully; the database answers go through noiseless orthogonal channels; there are no external security threats; the answer strings have unconstrained symmetric lengths. These assumptions are too idealistic to be practical in modern systems. In this thesis, we introduce extended versions of the classical PIR problem to be relevant to modern applications, namely: PIR from coded databases, multi-message PIR, PIR from colluding and Byzantine databases, PIR under asymmetric traffic constraints, noisy PIR, and PIR from wiretap channel II. We characterize the fundamental limits of such problems from an information-theoretic perspective. This involves two parts: first, we devise a practical scheme that retrieves the desired file(s) correctly and privately; second, we mathematically prove that no other retrieval scheme can achieve any higher rate than the proposed scheme. The optimal retrieval rate is called the PIR capacity reminiscent of the capacity of communication channels. First, we consider PIR from MDS-coded databases. Due to node failures and erasures that arise naturally in any storage system, redundancy should be introduced. However, replicating the content across the databases incurs high storage cost. This motivates the content of the databases to be coded instead of merely being replicated. We investigate the PIR problem from MDS-coded databases. We determine the optimal retrieval scheme for this problem, and characterize the exact PIR capacity. The result implies a fundamental tradeoff between the retrieval cost and the storage cost. Second, we consider the multi-message PIR. In this problem, the user is interested in retrieving multiple files from the databases without revealing the identities of these messages. We show that multiple messages can be retrieved more efficiently than retrieving them one-by-one in a sequence. When the user wishes to retrieve at least half of the files stored in the databases, we characterize the exact capacity of the problem by proposing a novel scheme that downloads MDS-coded mixtures of all messages. For all other cases, we develop a near-optimal scheme which is optimal if the ratio between the total number of files and the number of desired files is an integer. Third, we consider PIR from colluding and Byzantine databases. In this problem, a subset of the databases, called Byzantine databases, can return arbitrarily corrupted answers. In addition, a subset of the databases can collude by exchanging user queries. The errors introduced by the Byzantine databases can be unintentional (if databases store outdated message set), or even worse, can be intentional (as in the case of maliciously controlled databases). We propose a Byzantine and collusion resilient retrieval scheme, and determine the exact PIR capacity for this problem. The capacity expression reveals that the effect of the Byzantine databases is equivalent to removing twice the number of Byzantine databases from the system. Fourth, we consider PIR under asymmetric traffic constraints. A common property of the schemes constructed for the existing PIR settings is that they exhibit a symmetric structure across the databases. In practice, this may be infeasible, for instance when the links from the databases have different capacities. To that end, we develop a novel upper bound for the PIR capacity that incorporates the traffic asymmetry. We propose explicit achievability schemes for specific traffic ratios. For any other traffic ratio, we employ time-sharing. Our results show that asymmetry fundamentally hurts the retrieval rate. Fifth, we consider noisy PIR, where the returned answers reach the user via noisy channel(s). This is motivated by practical applications, such as, random packet dropping, random packet corruption, and PIR over wireless networks. We consider two variations of the problem, namely: noisy PIR with orthogonal links, and PIR from multiple access channel. For noisy PIR with orthogonal links, we show that channel coding and retrieval scheme are almost separable in the sense that the noisy channel affects only the traffic ratio. For the PIR problem from multiple access channel, the output of the channel is a mixture of all the answers returned by the databases. In this case, we show explicit examples, where the channel coding and the retrieval scheme are inseparable, and the privacy may be achieved for free. Sixth, we consider PIR from wiretap channel II. In this problem, there is an external eavesdropper who wishes to learn the contents of the databases by observing portions of the traffic exchanged between the user and the databases during the PIR process. The databases must encrypt their responses such that the eavesdropper learns nothing from its observation. We design a retrieval code that satisfies the combined privacy and security constraints. We show the necessity of using asymmetric retrieval schemes which build on our work on PIR under asymmetric traffic constraints. Next, we focus on the security problem in multi-user networks by physical layer techniques. Physical layer security enables secure transmission of information without a need for encryption keys. Hence, it mitigates the problems associated with exchanging encryption keys across open wireless networks. Existing work in physical layer security makes the following assumptions: All nodes are altruistic and follow a prescribed transmission policy to maximize the secure rate of the entire system; the channel inputs to Gaussian channels are constrained by a total transmitter-side power constraint; and in secure degrees of freedom studies for interference channels, users have a single antenna each. We address these issues by investigating the MIMO interference channel with confidential messages, security in networks with user misbehavior, and MIMO wiretap channel under receiver-side power constraints. We characterize the optimal secure transmission strategies in terms of the secrecy capacity and its high-SNR approximation, the secure degrees of freedom (s.d.o.f.). First, we determine the exact s.d.o.f. region of the two-user MIMO interference channel with confidential messages (ICCM). To that end, we propose a novel achievable scheme for the 2x2 ICCM system, which is a building block for any other antenna configuration. We show that the s.d.o.f. region starts as a square region, then it takes the shape of an irregular polytope until it returns back to a square region when the number of transmit antennas is at least twice the number of receiving antennas. Second, we investigate the security problem in the presence of user misbehavior. We consider the following multi-user scenarios: Multiple access wiretap channel with deviating users who do not follow agreed-upon optimum protocols, where we quantify the effect of user deviations and propose counter-strategies for the honest users; the broadcast channel with confidential messages in the presence of combating helpers, where we show that the malicious intentions of the helpers are neutralized and the full s.d.o.f. is retained; and interference channel with confidential messages when the users are selfish and have conflicting interests, where we show that selfishness precludes secure communication and no s.d.o.f. is achieved. Third, we consider the MIMO wiretap channel with a receiver-side minimum power constraint in addition to the usual transmitter-side power constraint. This problem is motivated by energy harvesting communications with wireless energy transfer, where an added goal is to deliver a minimum amount of energy to a receiver in addition to delivering secure data to another receiver. We prove that the problem is equivalent to solving a secrecy capacity problem with a double-sided correlation matrix constraint on the channel input. We extend the channel enhancement technique to our setting. We propose two optimum schemes that achieve the optimum rate: Gaussian signaling with a fixed mean and Gaussian signaling with Gaussian artificial noise. We extend our techniques to other related multi-user settings.Item SECURITY UNDER IMPERFECT CHANNEL KNOWLEDGE IN WIRELESS NETWORKS(2016) Mukherjee, Pritam; Ulukus, Sennur; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation studies physical layer security in wireless networks using an information theoretic framework. The central theme of this work is exploring the effect of delayed or no channel state information (CSI) on physical layer security in various wireless channel models. We begin with the fast Rayleigh fading wiretap channel, over which a legitimate transmitter wishes to have secure communication with a legitimate receiver in the presence of an eavesdropper. Subject to an average power constraint on the input, and with no CSI at any user, we show that the input distribution that achieves the secrecy capacity for this wiretap channel is discrete with a finite number of mass points. This enables us to evaluate the exact secrecy capacity of this channel numerically. Next, we consider multi-user models, specifically, the wiretap channel with M helpers, the K-user multiple access wiretap channel, and the K-user interference channel with an external eavesdropper, when no eavesdropper's CSI is available at the transmitters. In each case, we establish the optimal sum secure degrees of freedom (s.d.o.f.) by providing achievable schemes and matching converses. We show that the unavailability of the eavesdropper's CSI at the transmitter (CSIT) does not reduce the s.d.o.f. of the wiretap channel with helpers. However, there is loss in s.d.o.f. for both the multiple access wiretap channel and the interference channel with an external eavesdropper. In particular, we show that in the absence of eavesdropper's CSIT, the K-user multiple access wiretap channel reduces to a wiretap channel with (K-1) helpers from a sum s.d.o.f. perspective, and the optimal sum s.d.o.f. reduces from K(K-1)/(K(K-1)+1) to (K-1)/K. For the interference channel with an external eavesdropper, the optimal sum s.d.o.f. decreases from K(K-1)/(2K-1) to (K-1)/2 in the absence of the eavesdropper's CSIT. Our results show that the lack of eavesdropper's CSIT does not have a significant impact on the optimal s.d.o.f. for any of the three channel models, especially when the number of users is large. We, then, study multiple-input multiple-output (MIMO) multi-user channels. We begin with the case when full CSIT is available. We consider a two-user MIMO multiple access wiretap channel with N antennas at each transmitter, N antennas at the legitimate receiver, and K antennas at the eavesdropper. We determine the optimal sum s.d.o.f. for this model for all values of N and K. We subdivide our problem into several regimes based on the values of N and K, and provide achievable schemes based on real and vector space alignment techniques for fixed and fading channel gains, respectively. To prove the optimality of the achievable schemes, we provide matching converses for each regime. Our results show how the number of eavesdropper antennas affects the optimal sum s.d.o.f. of the multiple access wiretap channel. In line with the theme of this dissertation, we next consider the MIMO wiretap channel with one helper and the two-user MIMO multiple access channel when no eavesdropper CSIT is available. In each case, the eavesdropper has K antennas while the remaining terminals have N antennas. We determine the optimal sum s.d.o.f. for each channel model for the regime K<= N, and we show that in this regime, the multiple access wiretap channel reduces to the wiretap channel with a helper in the absence of eavesdropper CSIT. For the regime N<= K<= 2N, we obtain the optimal linear s.d.o.f., and show that the multiple access wiretap channel and the wiretap channel with a helper have the same optimal s.d.o.f. when restricted to linear encoding strategies. In the absence of any such restrictions, we provide an upper bound for the sum s.d.o.f. of the multiple access wiretap channel in the regime N<= K<= 2N. Our results show that unlike in the single-input single-output (SISO) case, there is loss of s.d.o.f. for even the wiretap channel with a helper due to lack of eavesdropper CSIT, when K>= N. Finally, we explore the effect of delayed CSIT on physical layer security. In particular, we consider the two user multiple-input single-output (MISO) broadcast channel with confidential messages, in which the nature of CSIT from each user can be of the form I_{i}, i=1,2 where I_{i} belongs to {P, D,N}, and the forms P, D and N correspond to perfect and instantaneous, completely delayed, and no CSIT, respectively. Thus, the overall CSIT can be any of nine possible states corresponding to all possible values of (I_{1},I_{2}). While the optimal sum s.d.o.f. in the homogeneous settings corresponding to I_1=I_2 are already known in the literature, we focus on the heterogeneous settings where I_1 is not equal to I_2 and establish the optimal s.d.o.f. region in each case. We further consider the case where the CSIT state varies with time. Each state (I_1,I_2) can then occur for \lambda_{I_{1}I_{2}} fraction of the total duration. We determine the s.d.o.f. region of the MISO broadcast channel with confidential messages under such an alternating CSIT setting, with a mild symmetry assumption, where \lambda_{I_{1} I_{2}}=\lambda_{I_{2}I_{1}}.Item Alignment and Cooperation for Secrecy in Multi-User Channels(2011) Bassily, Raef Bahi; Ulukus, Sennur; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The study of the physical layer has offered a new perspective to the problem of communication security. This led to the development of a vast set of ideas and techniques rooted in information theory which can be employed in practice to provide unbreakable security. The information-theoretic approach relies mainly on the physical nature of the communication medium. In a wireless medium, the unique features of the wireless communication channel, such as its fading and broadcast nature, can be exploited to achieve higher secure information rates. In this dissertation, we study the secure transmission problem in wireless channels from an information-theoretic perspective. We first consider the fading multiple access wiretap channel. We give two new achievable schemes that use the time-varying (fading) nature of the channel to align the interference from different users at the eavesdropper perfectly in a one-dimensional space while creating a higher-dimensional space for the interfering signals at the legitimate receiver hence allowing for better chance of recovery. While we achieve this alignment through signal scaling at the transmitters in our first scheme (scaling based alignment), we let nature provide this alignment through the ergodicity of the channel coefficients in the second scheme (ergodic secret alignment). For each scheme, we show that the achievable secrecy rates scale logarithmically with the signal-to-noise ratio (SNR). Next, we study the security gains that can be achieved in a wireless network by employing cooperation among the nodes which is possible due to the broadcast nature of the wireless channel. We investigate the role of passive (also known as deaf) cooperation in improving the achievable secrecy rates in a Gaussian multiple relay network with an external eavesdropper. We distinguish between two modes of deaf cooperation, namely, cooperative jamming (CJ) and noise forwarding (NF). We derive the conditions in which each mode of deaf cooperation achieves secrecy rates that are higher than the secrecy capacity of the original Gaussian wiretap channel. As a result, we show that a deaf helper cannot be a useful cooperative jammer and noise forwarder at the same time. We derive the optimal power control policy for each mode. We consider the deaf helper selection problem where a fixed-size set of deaf helpers (possibly operating in different modes) are to be selected from the set of available relays so that the achievable secrecy rate is maximized. We propose a simple and efficient suboptimal strategy for selection which is shown to be optimal when only one helper is selected. Furthermore, we study the role of a multi-antenna deaf helper. Unlike the single antenna case, we show that, in general, it is useful to split the helper's power between cooperative jamming and noise forwarding. Hence, we propose a deaf cooperation strategy for this model and derive its optimal power control policy. We also show, for specific class of relay-eavesdropper channels, that a simple cooperative jamming strategy yields a secrecy rate that approaches the secrecy capacity as the helper's power is increased. Finally, we consider the role of active cooperation for secrecy in the multiple relay networks. We propose several relaying strategies for secure communication and derive the achievable secrecy rate for each strategy. In our strategies the relays decode the source signal and then forward it to the destination either in a single-hop or a multi-hop fashion. Each relay scales its transmitted signal in a way that ensures that signal components from different relays are canceled out at the eavesdropper.