A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    ADVANCED MODELING AND REFRIGERANT FLOW PATH OPTIMIZATION FOR AIR-TO-REFRIGERANT HEAT EXCHANGERS WITH GENERALIZED GEOMETRIES
    (2019) Li, Zhenning; Radermacher, Reinhard K; Aute, Vikrant C; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Air-to-refrigerant heat exchangers are key components of the heating, ventilation, air-conditioning and refrigeration systems. The evolving simulation and manufacturing capabilities have given engineers new opportunities in pursuing complex and cost-efficient heat exchanger designs. Advanced heat exchanger modeling tools are desired to adapt to the industrial transition from conventional refrigerants to low Global Warming Potential (low-GWP) refrigerants. This research presents an advanced heat exchanger performance prediction model which distinguishes itself as a cutting-edge simulation tool in the literature to have capabilities, such as to (i) model heat exchangers with variable tube shape and topology, (ii) improved numerical stability, (iv) multiple dehumidification models to improve evaporator prediction, and (v) CFD-based predictions for airflow maldistribution. Meanwhile, HX performance is significantly influenced by the refrigerant flow path arrangements. The refrigerant flow path is optimized for various reasons such as to (i) mitigate the impact of airflow maldistribution, (ii) reduce material/cost, (iii) balance refrigerant state at the outlet of each circuit, and (iv) ensure overall stable performance under a variety of operating conditions. This problem is particularly challenging due to the large design space which increases faster than n factorial with the increase in the number of tubes. This research presents an integer permutation based Genetic Algorithm (GA) to optimize the refrigerant flow path of air-to-refrigerant heat exchangers. The algorithm has novel features such as to (i) integrate with hybrid initialization approaches to maintain the diversity and feasibility of initial individuals, (ii) use effective chromosome representations and GA operators to guarantee the chromosome (genotype) can be mapped to valid heat exchanger designs (phenotype), and (iii) incorporate real-world manufacturability constraints to ensure the optimal designs are manufacturable with the available tooling. Case studies have demonstrated that the optimal designs obtained from this algorithm can improve performance of heat exchangers under airflow maldistribution, reduce defrost energy and assure stable heat exchanger performance under cooling and heating modes in reversible heat pump applications. Comparison with other algorithms in literature shows that the proposed algorithm exhibits higher quality optimal solutions than other algorithms.
  • Thumbnail Image
    Item
    CFD MODELING AND ANALYSIS OF ROTOR WAKE IN HOVER INTERACTING WITH A GROUND PLANE
    (2014) Kalra, Tarandeep Singh; Baeder, James d; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The action of the rotor wake on loose sediment on the ground is primarily responsible for inducing the rotorcraft brownout phenomenon. Therefore, any simulation of brownout must be capable of accurately predicting the velocity field induced by the rotor when it is operating in ground effect. This work attempts to use a compressible, structured, overset Reynolds-Averaged Navier-Stokes (RANS) based solver to simulate hovering rotors in ground effect (IGE) to demonstrate the capability of the code to provide accurate tip vortex flow field predictions, and provide a good understanding of the ground-wake interactions. The computations are performed for a micro-scale rotor (0.086m radius, aspect ratio of 4.387 operating at a tip Mach number of 0.08 and Reynolds number of 32,500) and a sub-scale rotor (0.408m radius, aspect ratio of 9.132 operating at a tip Mach number of 0.24 and Reynolds number of 250,000) in order to compare to experimental measurements. The micro-scale rotor has a rectangular tip shape and is simulated three rotor heights: 1.5R, 1.0R and 0.5R above ground (R = Rotor radius). The sub-scale rotor is simulated at one particular rotor height (i.e. 1R) but with four different tip shapes: rectangular, swept, BERP-like and slotted tip. Various mesh placement strategies are devised to efficiently capture the path of the tip vortices for both regimes. The micro-scale rotor simulations are performed using the Spalart Allmaras (S-A) turbulence model. The examination of the IGE tip vortex flow field suggests high degree of instabilities close to the ground. In addition, the induced velocities arising from the proximity of the rotor tip vortices causes flow separation at the ground. The sub-scale rotor simulations show a smeared out flow field even at early wake ages due to excessive turbulence levels. The distance function in the S-A turbulence model is modified using the Delayed Detached Eddy Simulation (DDES) approach and a correction to length scaling is included for anistropic grids. The resulting computational flow field after these modifications compares well with the experiments. The slotted tip is seen to diffuse the tip vortices at early wake ages through injection of momentum and increased turbulence, and generates the least amount of unsteady pressure variation at the ground plane when compared with other three tip shapes.
  • Thumbnail Image
    Item
    Thermo-Optic Aspects of Large Screen Plasma Display Panels
    (2007-05-16) Kahn, Jeffry Joseph; Bar-Cohen, Avram; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Plasma Display Panels (PDPs) are a popular technology for large size television displays. Screen inefficiencies, which result in significant localized heat generation, necessitate the use of advanced thermal management materials to reduce the peak temperatures and spatial temperature variations across the screen. In the current study, infrared thermography was used to obtain thermal maps of a typical, 42", high-definition PDP screen for different illumination patterns and for several configurations of externally controlled heaters simulating PDP heat generation. The results were used to validate a three-dimensional numerical thermal model of the PDP designed to predict the beneficial effects of anisotropic graphite heat spreaders on the temperature distribution. In addition, a color analyzer was used to determine the spatial and temporal variations in luminosity across the PDP when operated continuously for 1750 hours. The thermal model and experimental luminosity characteristics were used to evaluate the deleterious effects of temperature on PDP performance.