A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    A Framework for Remaining Useful Life Prediction and Optimization for Complex Engineering Systems
    (2024) Weiner, Matthew Joesph; Azarm, Shapour; Groth, Katrina M; Reliability Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Remaining useful life (RUL) prediction plays a crucial role in maintaining the operational efficiency, reliability, and performance of complex engineering systems. Recent efforts have primarily focused on individual components or subsystems, neglecting the intricate relationships between components and their impact on system-level RUL (SRUL). The existing gap in predictive methodologies has prompted the need for an integrated approach to address the complex nature of these systems, while optimizing the performance with respect to these predictive indicators. This thesis introduces a novel methodology for predicting and optimizing SRUL, and demonstrates how the predicted SRUL can be used to optimize system operation. The approach incorporates various types of data, including condition monitoring sensor data and component reliability data. The methodology leverages probabilistic deep learning (PDL) techniques to predict component RUL distributions based on sensor data and component reliability data when sensor data is not available. Furthermore, an equation node-based Bayesian network (BN) is employed to capture the complex causal relationships between components and predict the SRUL. Finally, the system operation is optimized using a multi-objective genetic algorithm (MOGA), where SRUL is treated as a constraint and also as an objective function, and the other objective relates to mission completion time. The validation process includes a thorough examination of the component-level methodology using the C-MAPSS data set. The practical application of the proposed methodology in this thesis is through a case study involving an unmanned surface vessel (USV), which incorporates all aspects of the methodology, including system-level validation through qualitative metrics. Evaluation metrics are employed to quantify and qualify both component and system-level results, as well as the results from the optimizer, providing a comprehensive understanding of the proposed approach’s performance. There are several main contributions of this thesis. These include a new deep learning structure for component-level PHM, one that utilizes a hybrid-loss function for a multi-layer long short-term memory (LSTM) regression model to predict RUL with a given confidence interval while also considering the complex interactions among components. Another contribution is the development of a new framework for computing SRUL from these predicted component RULs, in which a Bayesian network is used to perform logic operations and determine the SRUL. These contributions advance the field of PHM, but also provide a practical application in engineering. The ability to accurately predict and manage the RUL of components within a system has profound implications for maintenance scheduling, cost reduction, and overall system reliability. The integration of the proposed method with an optimization algorithm closes the loop, offering a comprehensive solution for offline planning and SRUL prediction and optimization. The results of this research can be used to enhance the efficiency and reliability of engineering systems, leading to more informed decision-making.
  • Thumbnail Image
    Item
    A PHYSICS-INFORMED NEURAL NETWORK FRAMEWORK FOR BIG MACHINERY DATA IN PROGNOSTICS AND HEALTH MANAGEMENT FOR COMPLEX ENGINEERING SYSTEMS
    (2022) Cofre Martel, Sergio Manuel Ignacio; Modarres, Mohammad; Lopez Droguett, Enrique; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Big data analysis and data-driven models (DDMs) have become essential tools in prognostics and health management (PHM). Despite this, several challenges remain to successfully apply these techniques to complex engineering systems (CESs). Indeed, current state-of-the-art applications are treated as black-box algorithms, where research efforts have focused on developing complex DDMs, overlooking or neglecting the importance of the data preprocessing stages prior to training these models. Guidelines to adequately prepare data sets collected from CESs to train DDMs in PHM are frequently unclear or inexistent. Furthermore, these DDMs do not consider prior knowledge on the system’s physics of degradation, which gives little-to-no control over the data interpretation in reliability applications such as maintenance planning.In this context, this dissertation presents a physics-informed neural network (PINN) architecture for remaining useful life (RUL) estimation based on big machinery data (BMD) collected from sensor monitoring networks (SMNs) in CESs. The main outcomes of this work are twofold. First, a systematic guide to preprocess BMD for diagnostics and prognostics tasks is developed based on expert knowledge and data science techniques. Second, a PINN-inspired PHM framework is proposed for RUL estimation through an open-box approach by exploring the system’s physics of degradation through partial differential equations (PDEs). The PINN-RUL framework aims to discover the system’s underlying physics-related behaviors, which could provide valuable information to create more trustworthy PHM models. The data preprocessing and RUL estimation frameworks are validated through three case studies, including the C-MAPSS benchmark data set and two data sets corresponding to real CESs. Results show that the proposed preprocessing methodology can effectively generate data sets for supervised PHM models for CESs. Furthermore, the proposed PINN-RUL framework provides an interpretable latent variable that can capture the system’s degradation dynamics. This is a step forward to increase interpretability of prognostic models by mapping the RUL estimation to the latent space and its implementation as a state of health classifier. The PINN-RUL framework is flexible as it allows incorporating available physics-based models to its architecture. As such, this framework takes a step forward in bridging the gap between statistic-based PHM and physics-based PHM methods.