A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
16 results
Search Results
Item ELECTROLYTE AND INTERPHASE DESIGN FOR HIGH-ENERGY AND LONG-LIFE LITHIUM/SULFURIZED POLYACRYLONITRILE (Li/SPAN) BATTERIES(2024) Phan, An Le Bao; Wang, Chunsheng; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Lithium/sulfurized polyacrylonitrile (Li/SPAN) recently emerged as a promising battery chemistry with theoretical energy density beyond traditional lithium-ion batteries, attributed to the high specific capacities of Li and SPAN. Compared to traditional sulfur-based cathodes, SPAN demonstrated superior sulfur activity/utilization and no polysulfide dissolution issue. Compared to batteries based on layered oxide cathodes, Li/SPAN shows two significant advantages: (1) high theoretical energy density (> 1000 Wh kg-1, compared to around 750 Wh kg-1 of Li/LiNi0.8Mn0.1Co0.1O2) and (2) transition-metal-free nature, which eliminates the shortcomings associated with transition metals, such as high cost, low abundance, uneven distribution on the earth and potential toxicity. The success of Li/SPAN chemistry with those two critical advantages would not only relief the range and cost anxiety persistently associated with electric vehicle (EV) applications, but also have great implications for the general energy storage market. However, current Li/SPAN batteries still fall far behind their true potential in terms of both energy density and cycle life. This dissertation aims to provide new insights into bridging the theory-practice gap of Li/SPAN batteries by appropriate interphase and comprehensive electrolyte designs. First, the effect of Li/SPAN cell design on energy density and cycle life was discussed using relevant in-house developed models. The concept of “sensitivity factor” was established and used to quantitatively analyze the influence of input parameters. It was found that the electrolyte, rather than SPAN and Li electrodes, represents the bottleneck in Li/SPAN development, which explains our motivation to focus on electrolyte study. Another remarkable finding is that although not well-perceived, electrolyte density has a great impact on Li/SPAN cell-level energy density. Second, design principles to achieve good electrode-electrolyte compatibility were explored. Novel approaches to promote the formation of more protective, inorganic-rich interphases (SEI or CEI) were proposed and validated with proper experiments, including electrochemical tests, material characterizations (such as SEM, XPS, NMR, IR, Raman), and their correlations. Finally, based on the principles discussed in previous chapters, we developed a new electrolyte that simultaneously offers good electrochemical performance (Li CE > 99.4%, Li-SPAN full-cells > 200 cycles), decent ionic conductivity (1.3 mS cm-1), low density (1.04 g mL-1), good processability (higher vapor pressure than conventional carbonates, b.p. > 140 °C), and good safety. Outlook and perspective will also be presented. Beyond Li/SPAN, we believe that our findings regarding cell design as well as electrolyte solvation structure, interphases chemistry, and their implications on electrochemical performance are also meaningful for the development of other high-energy battery chemistries.Item ELECTROLYTE AND INTERFACE DESIGNATION FOR HIGH-PERFORMANCE SOLID-STATE LITHIUM METAL BATTERIES(2024) Zhang, Weiran; Wang, Chunsheng; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The demand for advanced battery technology is intensifying as electric energy becomes the foundation of modern technologies, such as smart devices, transportation, and artificial intelligence. Batteries play a crucial role in meeting our increasing energy demands and transitioning towards cleaner and more sustainable energy sources. However, range anxiety and safety concerns still hinder the widespread application of battery technology.Current Li-ion batteries, based on graphite anode, have revolutionized battery technology but are nearing the energy density limits. This necessitates the development of metal batteries, employing lithium metal as anode which eliminates host materials that do not contribute to capacity, thereby offering 10 times higher specific capacity. Recent research on lithium metal batteries has seen a significant surge, with growing knowledge transitioning from Li+ intercalation chemistry (graphite) to Li metal plating/stripping. The electrolyte, which was previously regarded as an inert material and acting as a Li+ ion transportation mediator, has gradually attracted researchers’ attention due to its significant impact on the solid electrolyte interphase (SEI) and the Li metal plating/stripping behaviors. Compared to the traditional liquid electrolytes, solid-state lithium metal batteries (SSLMB) have been regarded as the holy grail, the future of electric vehicles (EVs), due to their high safety and potential for higher energy density. However, there are notable knowledge gaps between liquid electrolytes and solid-state electrolytes (SSEs). The transition from liquid-solid contact to solid-solid contact poses new challenges to the SSLMB. As a result, the development of SSLMB is strongly hindered by interface challenges, including not only the Li/SSE interfaces and SSE/cathode interfaces but also SSE/SSE interfaces. In this dissertation, I detailed our efforts to highlight the role of electrolytes and interfaces and establish our understanding and fundamental criteria for them. Building on this understanding, we propose effective and facile engineering solutions that significantly enhance batterie metrics to meet real-world application demand. Rather than simply introducing new compositions or new designations, we are dedicated to introducing our understanding and mechanism behind it, we hope the scientific understanding, the practical solution, and the applicability to various systems can further guide and inspire the electrolyte and interface designation for next-generation battery technology.Item ULTRA-THIN ON-CHIP ALD LIPON AS SOLID-STATE ELECTROLYTE FOR HIGH ENERGY AND HIGH FREQUENCY CAPACITOR APPLICATIONS(2022) Ahuja, Kunal; McCluskey, F. Patrick; Rubloff, Gary W.; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Liquid electrolytes dominate the supercapacitor market due to their high ionic conductivity leading to high energy and power density metrics. However, with the increase in demand for portable and implantable consumer electronics, all solid-state supercapacitor systems with high safety are an attractive option from both application perspectives and their similar charge storage mechanism. For solid state ionic capacitors, there remains significant room for innovation to increase the ionic conductivity and capacitor architecture to enhance the performance of these devices. Nano-structuring along with advanced manufacturing techniques such as atomic layer deposition (ALD) are powerful tools to augment the performance metrics of these all-solid-state capacitors that can compete with state-of-the-art liquid electrolyte-based supercapacitors. This dissertation has two primary objectives; 1) Study the behavior of polymorphs of ALD LiPON as a capacitor material and 2) Enhance the performance metrics using advanced materials and 3D nanostructuring for improved energy storage and high-frequency applications.In this work, ALD LiPON-based solid state capacitors are fabricated with a gold current collector to study the behavior of the solid electrolyte. LiPON shows a dual energy storage behavior, in low frequency (<10 kHz), LiPON shows an ionic behavior with electric double layer type energy storage, beyond this frequency, LiPON shows an electrostatic behavior with a dielectric constant of 14. The capacitor stack's thin film structure and dual frequency behavior allow for extended frequency operation of these capacitors (100 Hz to 2000 MHz). Next, LiPON's energy storage metrics are enhanced by pseudocapacitive energy storage behavior and increased surface area using ALD oxy-TiN. Finally, new fabrication techniques and ALD recipes are developed and optimized for integration into 3D templates. For fabrication of these capacitors, the material's chemistry is analyzed, and ALD techniques are developed for the deposition of electrode/electrolyte materials and current collectors into the 3D nanostructures. The intermixing during the ALD processes are studied to understand the behavior and reliability of these thin films. This work highlights LiPON characteristics as a capacitor material for high-energy and high-frequency applications. Though incomplete, we discuss progress towards the development of all ALD solid-state 3D supercapacitors that can compete against state-of-the-art capacitors available in the market.Item DETERMINING ELONGATION AT BREAK OF CABLE INSULATIONS USING CONDITION MONITORING PARAMETERS(2022) Gharazi, Salimeh; Al-Sheikhly, Mohamad; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Many United States nuclear power plants are seeking to renew life licenses to extend the operational life of the plant to an additional 20 or 40 years. Degradation of insulation and jacket of cables, which are originally designed for 40 years in the second round of operation, is a critical issue which can impair the safe and reliable function of cables and ultimately the plant. The main criterion for assessing the end of life of these insulations is defined when the elongation at break reaches 50% of its original value. However, measuring the elongation at break is done by tensile tests, which are destructive and need large samples; the feasibility of these tests is significantly limited on installed cables at nuclear power plants. A new model was developed to relate the changes in the activation energy corresponding to EAB in terms of the changes in the activation energies corresponding to non-destructive condition monitoring, NDE-CM, parameters. The coefficients of the model are obtained by normalizing the calculated activation energy of each CM parameter’s changes with the activation energy of EAB changes. Therefore, it is possible to estimate EAB values, in the present developed equations, from the substitution of activation energy corresponding to EAB changes with the correlated activation energy of the non-destructive condition monitoring parameters. Cable Polymer Aging database, C-PAD, which is provided by Electric Power Research Institute, and supported by the U.S. Department of Energy, along with experimental results done in the University of Maryland, UMD, laboratory was used as the database. While taking advantage of C-PAD database which contains condition monitoring parameters of insulation cables such as Elongation at break, Modulus and Density provided by many U.S. and international research institutes, extensive aging experimental results on two cables, each with two grades provided us with not only a database but also a better understanding of the aging mechanism. The published experimental results of cable insulations are used to validate the model. A good fit between the experimental and modeled results confirms the validity of the model.Item ATOMIC LAYER DEPOSITION OF CADMIUM TELLURIDE FOR THE PASSIVATION OF MERCURY CADMIUM TELLURIDE(2021) Pattison, James William; Salamanca-Riba, Lourdes G; VanMil, Brenda; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Mercury cadmium telluride (MCT) is an important infrared (IR) detector material due to high quantum efficiency and the ability to tune the bandgap, covering important IR wavelengths from near-infrared (~1 m) to very-long wavelength infrared (>12 m) detection. Focal Plane Arrays (FPAs) are used to image in the infrared and consist of photodiodes that absorb IR photons, generating charge carriers that create an electric signal used to form an image by combining the signals from all of the photodiodes. Decreasing photodiode size increases the resolution of optical systems incorporating MCT FPAs, but challenges current state-of-the-art passivation processes. Passivation is needed to increase the signal-to-noise of a system by rendering benign the charge carrier transport. Physical-vapor-deposited (PVD) CdTe is the incumbent passivation material for MCT, but fails when applied to the next generation of MCT photodiodes because of non-conformal deposition. Atomic layer deposition (ALD) is a superior deposition technique in this regard because the vapor-phase chemicals enable conformal exposure of the surface as opposed to line-of-sight deposition in PVD. ALD of CdTe requires deposition temperature lowering to suppress out-gassing of Hg at elevated temperature, which leads to mercury vacancy formation, reducing signal-to-noise of any eventual detector. Previous demonstration of CdTe ALD was spontaneous above ~200 °C for chemisorbed dimethylcadmium (DMCd) to react with diethyltellurium (DETe). However, this temperature is incompatible with MCT devices, because of the loss of Hg from the material. This dissertation attempts to overcome the low temperature requirement of current CdTe ALD using a novel approach in which argon plasma successfully decomposes the chemisorbed DMCd, replacing temperature induced thermal decomposition, and induced CdTe growth using either DETe or bis(trimethylsilyl)telluride as the tellurium precursors at low temperatures. Film deposition conditions were developed through deposition on silicon substrates, and the process was transferred to MCT samples, demonstrating low temperature deposition, conformal deposition, and passivation of the MCT surface. The films were characterized by in situ spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), x ray diffraction (XRD), and transmission electron microscopy (TEM). Photoconductive decay (PCD) measurements were made of MCT material passivated by CdTe ALD, demonstrating effective passivation through enhanced minority carrier lifetime.Item Ultrathin Materials for Advanced Energy Storage(2020) Hitz, Emily Michelle; Hu, Liangbing; Rubloff, Gary W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The demand for batteries that can meet the high energy density and reliability needs of the future is ever growing and drives current research trends in the battery field toward the development of practical metallic Li anodes. Overcoming the difficult rechargeability and safety obstacles that affected the first-generation lithium-ion batteries in decades past has required diligent research and introduced of a host of new material systems, including solid-state inorganic electrolytes. Solid-state electrolytes represent a fundamental departure from conventional liquid-electrolyte lithium-ion batteries and offer a path toward versatile and high-energy-density energy storage. Inorganic solid-state electrolytes have still faced challenges, such as unfavorable interface characteristics with electrode materials and low ionic conductivity compared to liquid electrolytes, but recent advancements have helped to overcome these obstacles and position solid-state electrolytes as promising candidates for use in state-of-the-art batteries. To achieve widespread adoption of solid-state electrolytes, however, prevailing issues like Li dendrite formation and subsequent electrical shorting must be understood and solved. Based on research that suggests a dependence of dendrite formation on the electronic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZO-Ta) solid electrolyte, I first investigate a thin, conformal layer of electronic-insulating, ion-conducting lithium phosphorus oxynitride (LiPON) deposited at the interface between garnet-type electrolyte and a metallic Li alloy anode. Using atomic layer deposition to ensure continuity of the LiPON layer across the garnet LLZO-Ta surface, I fabricate Li-Li symmetric cells that achieve long cycle life free of dendrites. After demonstrating the merits of a thin, electronically insulating layer applied at the interface between Li metal and LLZO-Ta, I probe into the relationship between the ionic and electronic conductivity of solid-state electrolytes with the goal of providing guidance on the rational design of dendrite-free solid-state electrolytes. Toward this aim, I consider an electronic-conductivity-modulated LLZO-Ta electrolyte matrix with LiPON coatings of varying thickness. With support from literature, I also explore the implications of an electron-blocking, ion-conducting layer in full-cell batteries, drawing conclusions about their potential use at the cathode-electrolyte interface. The impact of ion-conducting, electron-blocking thin surface coatings for Li dendrite inhibition in solid-state electrolytes is far-reaching and provides a reliable strategy for high-performance solid-state batteries.Item Soot Oxidation in Flames: Nanostructure, Morphology, and Chemical Kinetics(2019) Anderson, Paul Marcus; Sunderland, Peter B.; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Soot produced from the combustion of hydrocarbons is of immense scientific interest owing to its deleterious effects on human health and the environment. Despite decades of research, existing soot models are accurate across only a narrow range of combustion conditions. A substantial portion of this inaccuracy is rooted in the multitude of factors affecting soot oxidation that remain ill-understood. In the current work, a novel flame system allowed soot oxidation to be observed in isolation from competing soot formation processes. Measurements tracked evolving soot structures, oxidation rates, temperatures and gas species concentrations. Transmission electron microscopy (TEM) was used to characterize soot structure at aggregate, primary particle, and nanostructural scales. For this, a program called Aerosol Image Analyzer was developed, incorporating new algorithms for processing and measuring TEM images of mass-fractal aerosols, like soot. For the first time, TEM image measurement uncertainties incorporating sample, operator, and random effects, were quantified through gage repeatability and reproducibility analysis. Successful methods for reducing operator bias were presented, and automated measurement methods from literature were tested and found to be unreliable. Measurements of surface area by N2 adsorption validated TEM as a technique for determining soot specific surface area, provided that the polydispersity and partial sintering of primary particles is taken into account. TEM measurements of soot undergoing oxidation showed continuously decreasing primary particle size distributions and increasing specific surface area. Measurements of soot aggregate morphology found a fractal dimension of 1.74 that was unchanged by oxidation. The breakup of aggregates by oxidative fragmentation was observed for the first time using methods that combined TEM analysis with laser extinction. Soot nanostructure was characterized through high resolution TEM measurements of lattice fringe length, tortuosity, orientation, and separation distance. It was observed that primary particles could be divided into an inner 80%, where lattice fringes showed greater graphitic order with increasing radial location, and an outer 20%, where this trend was reversed. While oxidation proceeded in a shrinking-sphere manner at the particle surface, the interior underwent thermal and oxidation-induced graphitization, challenging the assumption that the nanostructure of mature soot is “locked-in.” This results in a surface nanostructure that is effectively unchanging from the perspective of the oxidizing gases and corresponds to a constant collision efficiency kinetics model.Item EFFECTS OF DOPING AND DEFECTS IN BaSnO3 AND COVETIC ALLOYS(2018) Jaim, H. M. Iftekhar; Takeuchi, Ichiro; Salamanca-Riba, Lourdes G.; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Doping and defects have played major roles for optimizing the structural, electrical, optical and mechanical properties of materials over the centuries. With the advent of modern fabrication and characterization tools, we are engineering materials by modifying the fundamental structure at the nano-scale. Such research and innovations are necessary to find alternatives of the known materials to meet technological, economic and environmental challenges. In this dissertation, we will discuss two classes of materials to identify the effects of atomic level engineering on the enhanced properties of Covetic alloys and BaSnO3 perovskites. The first part of the thesis is based on the nanoscale and surface characterizations of the carbon doped metal alloys of aluminum and silver produced by the Covetic process. We have found the presence of sp2 bonded 3D epitaxial carbon in graphene nano-ribbon form on the aluminum and silver atomic planes. Such directional presence of sp2 carbon in the crystalline form along with other allotropes will be studied. Here, we have detailed the bonding, strain, defect concentrations, and oxidation characteristics of these compositions, and distinguished Covetic materials from other carbon based composites. Covetic process is significant as it defies the traditional metal-carbon phase diagrams under non-equilibrium conditions. The second part of the dissertation focuses on the BaSnO3, a major candidate in s-band electronics and transparent conducting oxide industry. Here, we will demonstrate the role of oxygen vacancies for inducing high conductivity in the BaSnO3 thin films from insulating state and their stability on single crystal substrates deposited by pulsed laser deposition. To further investigate the role of multi-valent rare earth element doping on optical and electronic properties, results of Lead (Pb), Bismuth (Bi) and Strontium (Sr) substitution by combinatorial synthesis of BaSnO3 are presented. We have tuned the bandgap from 3 to 4 eV based on the substitutions, and observed clustering and in-gap states for Pb and Bi-substitutions, respectively. Lastly, experiments regarding the search of the BaSnO3 based superconductors by carrier injection, multi-valent states and strain engineering will be discussed.Item Electroosmotic Soft Actuators(2017) Sritharan, Deepa; Smela, Elisabeth; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation details the research involved in creating the first paper-based soft actuator driven by electroosmosis. To accomplish this, research breakthroughs were made in the fields of electrokinetic pumping and device manufacturing using soft materials. Electroosmosis is an electrically induced microfluidic flow phenomenon. When an electric field is applied to the fluid, across the microchannels, electroosmotic flow occurs in the direction of the applied electric field. In this work, liquid was electroosmotically displaced within a flexible microfluidic device to actuate an elastomeric membrane. The goal of this work was to create a fully sealed fluidic actuator. It was therefore necessary to encapsulate the pumping fluid within the device, and to maximize pressure it was necessary to eliminate compliance caused by trapped gases. Electrolytic gas formation is well known to disrupt pumping in DC electroosmotic systems that use water as the pumping liquid. In this work, electrolysis was eliminated by replacing water with propylene carbonate (PC): PC was determined to be electrochemically stable up to at least 10 kV, in the absence of moisture or salt contaminants. Bubble-free electroosmotic pumping with PC was achieved within sealed miniature actuators, which could be continuously operated for at least one hour. Benchtop fabrication techniques were developed to build encapsulated fluidic actuators composed entirely of soft, flexible materials. Stretchable electrochemically stable electrodes were made using a conductive paint made by mixing carbon nanoparticles into a silicone base. High-density microchannel networks were incorporated by using paper and other flexible porous materials, instead of conventional planar replica-molded microchannels. The device was filled with pumping fluid without the use of external tubing, and then encapsulated by casting a film of elastomer over the filled reservoir to form the actuating membrane. The resulting actuators were flexible and stretchable, demonstrating significant membrane deformations (hundreds of micrometers) within seconds of applying the electric field and ability to lift large loads (tens of grams). These polymeric electroosmotic actuators are unique among electroactive polymer actuators because they are able to simultaneously generate high force as well as large stroke. It is envisioned that this research will pave the way for the creation of artificial muscles and smart shape-changing materials that can be actuated by electroosmosis.Item Electrically Induced Gelation, Rupture, and Adhesion of Polymeric Materials(2017) Gargava, Ankit; Raghavan, Srinivasa R; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)There has been considerable interest in developing stimuli-responsive soft materials for applications in drug delivery, biosensing, and tissue engineering. A variety of stimuli have been studied so far, including temperature, pH, light, and magnetic fields. In this dissertation, we explore the use of electric fields as a stimulus for either creating new soft materials or for rupturing existing ones. Our materials are based typically on biocompatible polymers such as the polysaccharides alginate, chitosan, and agarose. We also discuss the advantages and disadvantages of electric fields over other stimuli. First, we describe the use of electric fields to form transparent and robust alginate gels around an initial mold made of agarose. Moreover, we can melt away the agarose by heat, leaving us with hollow alginate tubes. In our technique, a tubular agarose mold with dissolved calcium chloride (CaCl2) is placed in a solution of sodium alginate. A voltage of ~ 10 V is then applied, with the mold as the anode and the container as the cathode. As the Ca2+ ions migrate from the mold towards the cathode, they contact the alginate chains at the mold surface. In turn, the Ca2+ crosslinks the alginate chains into a gel, and the gel grows outward with time. The technique can be used to grow multiple layers of alginate, each with a different content, and it is also safe for encapsulation of biological species. Complex tubular structures with multiple branches and specific patterns can be created. Next, we report that electric fields can be used to rupture particles formed by ionic complexation. The particles under study are typically in the microscale (~ 200 µm radius) and are either uniformly crosslinked microbeads (e.g., alginate/Cu2+) or microcapsules formed by complexation of oppositely charged polymers (alginate and chitosan). When these particles are placed in aqueous solution and subjected to an electric field of about 10 V/cm (applied remotely, i.e., electrodes not in contact), the particles rupture within about 5 min. A possible mechanism for the electric-field-induced disruption is discussed. We also use the above particles to create electrically actuatable valves, where the flow of a liquid occurs only when the particle blocking the flow is disrupted by the field. In our final study, we show that polyelectrolyte gels and beads can be rapidly induced to adhere by an electric field. We typically work with crosslinked acrylate hydrogels made with cationic co-monomers, and anionic beads made by contacting alginate with Ca2+. When the cationic gel (connected to an anode) is contacted for just a few seconds with the anionic bead (connected to a cathode) under a voltage of ~ 10 V, the two form a strong adhesive bond. When the polarity of the electrodes is reversed, the phenomenon is reversed, i.e., the gel and bead can be easily detached. We suggest that the adhesion is due to electrophoretic migration of polyelectrolyte chains, resulting in the formation of polyion complexes. Applications of this reversible adhesion are discussed for the pick-up and drop-off of soft cargo, and for the sorting of beads.