A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Effects of Protein Unfolding on Aggregation and Gelation in Lysozyme Solutions
    (MDPI, 2020-09-02) Nikfarjam, Shakiba; Jouravleva, Elena V.; Anisimov, Mikhail A.; Woehl, Taylor J.
    In this work, we investigate the role of folding/unfolding equilibrium in protein aggregation and formation of a gel network. Near the neutral pH and at a low buffer ionic strength, the formation of the gel network around unfolding conditions prevents investigations of protein aggregation. In this study, by deploying the fact that in lysozyme solutions the time of folding/unfolding is much shorter than the characteristic time of gelation, we have prevented gelation by rapidly heating the solution up to the unfolding temperature (~80 °C) for a short time (~30 min.) followed by fast cooling to the room temperature. Dynamic light scattering measurements show that if the gelation is prevented, nanosized irreversible aggregates (about 10–15 nm radius) form over a time scale of 10 days. These small aggregates persist and aggregate further into larger aggregates over several weeks. If gelation is not prevented, the nanosized aggregates become the building blocks for the gel network and define its mesh length scale. These results support our previously published conclusion on the nature of mesoscopic aggregates commonly observed in solutions of lysozyme, namely that aggregates do not form from lysozyme monomers in their native folded state. Only with the emergence of a small fraction of unfolded proteins molecules will the aggregates start to appear and grow.
  • Thumbnail Image
    Item
    Noble Metal Ion-Directed Assembly of 2D Materials for Heterostructured Catalysts and Metallic Micro-Texturing
    (Wiley, 2023-05-07) Little, Joshua M.; Sun, Jiayue; Kamali, Ali; Chen, Amy; Leff, Asher C.; Li, Yang; Borden, Leah K.; Dissanayake, Thilini U.; Essumang, Deborah; Oseleononmen, Benita O.; Liu, Dongxia; Woehl, Taylor J.; Chen, Po-Yen
    Assembling 2D-material (2DM) nanosheets into micro- and macro-architectures with augmented functionalities requires effective strategies to overcome nanosheet restacking. Conventional assembly approaches involve external binders and/or functionalization, which inevitably sacrifice 2DM's nanoscale properties. Noble metal ions (NMI) are promising ionic crosslinkers, which can simultaneously assemble 2DM nanosheets and induce synergistic properties. Herein, a collection of NMI–2DM complexes are screened and categorized into two sub-groups. Based on the zeta potentials, two assembly approaches are developed to obtain 1) NMI-crosslinked 2DM hydrogels/aerogels for heterostructured catalysts and 2) NMI–2DM inks for templated synthesis. First, tetraammineplatinum(II) nitrate (TPtN) serves as an efficient ionic crosslinker to agglomerate various 2DM dispersions. By utilizing micro-textured assembly platforms, various TPtN–2DM hydrogels are fabricated in a scalable fashion. Afterward, these hydrogels are lyophilized and thermally reduced to synthesize Pt-decorated 2DM aerogels (Pt@2DM). The Pt@2DM heterostructures demonstrate high, substrate-dependent catalytic activities and promote different reaction pathways in the hydrogenation of 3-nitrostyrene. Second, PtCl4 can be incorporated into 2DM dispersions at high NMI molarities to prepare a series of PtCl4–2DM inks with high colloidal stability. By adopting the PtCl4–graphene oxide ink, various Pt micro-structures with replicated topographies are synthesized with accurate control of grain sizes and porosities.
  • Thumbnail Image
    Item
    Pearl-Like Sheen in Soft Capsules: An Unusual Optical Effect that is Reversibly Induced by Temperature
    (Wiley, 2023-05-26) Rath, Medha; Fear, Allison; Woehl, Taylor J.; Raghavan, Srinivasa R.
    A pearl-like sheen (i.e., pearlescence) is seen in many natural materials like nacre and in some commercial paints and cosmetics. This phenomenon is attributed to the interaction of light with plate-like particles in the material. Here, for the first time, pearlescence is demonstrated in soft millimeter-scale capsules that contain no plate-like particles. The capsules have a thin (~500 µm) outer shell of N-isopropylacrylamide (NIPA) hydrogel, which has a lower critical solution temperature (LCST) of 32 °C. When a transparent NIPA-shelled capsule is heated above this LCST, it turns pearlescent. The effect is reversible, with the transparent state being recovered upon cooling. This is the first example of reversible pearlescence in any solid. Specular reflectance measurements show that the pearlescence of the capsules is comparable to that of natural pearls. Pearlescence is not observed in NIPA hydrogels; it arises only in NIPA-shelled capsules, and that too only when the shell is thin. Above its LCST, the NIPA shell shrinks and gets stretched, and nanoscale NIPA-rich domains arise within this shell, which induce the pearlescence. This study sheds fresh insight into the nature of pearlescence, on how it can be tuned, and on how this property can be introduced into various soft materials.