A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Shape-Changing Tubular Hydrogels
    (MDPI, 2018-02-22) Raghavan, Srinivasa R.; Fernandes, Neville J.; Cipriano, Bani H.
    We describe the creation of hollow tubular hydrogels in which different zones along the length of the tube are composed of different gels. Our method to create these gels is adapted from a technique developed previously in our lab for creating solid hybrid hydrogels. The zones of our tubular gel are covalently bonded at the interfaces; as a result, these interfaces are highly robust. Consequently, the tube can be picked up, manipulated and stretched without suffering any damage. The hollow nature of these gels allows them to respond 2–30-fold faster to external stimuli compared to a solid gel of identical composition. We study the case where one zone of the hybrid tube is responsive to pH (due to the incorporation of an ionic monomer) while the other zones are not. Initially, the entire tube has the same diameter, but when pH is changed, the diameter of the pH-responsive zone alone increases (i.e., this zone bulges outward) while the other zones maintain their original diameter. The net result is a drastic change in the shape of the gel, and this can be reversed by reverting the pH to its original value. Similar localized changes in gel shape are shown for two other stimuli: temperature and solvent composition. Our study points the way for researchers to design three-dimensional soft objects that can reversibly change their shape in response to stimuli.
  • Thumbnail Image
    Item
    Pearl-Like Sheen in Soft Capsules: An Unusual Optical Effect that is Reversibly Induced by Temperature
    (Wiley, 2023-05-26) Rath, Medha; Fear, Allison; Woehl, Taylor J.; Raghavan, Srinivasa R.
    A pearl-like sheen (i.e., pearlescence) is seen in many natural materials like nacre and in some commercial paints and cosmetics. This phenomenon is attributed to the interaction of light with plate-like particles in the material. Here, for the first time, pearlescence is demonstrated in soft millimeter-scale capsules that contain no plate-like particles. The capsules have a thin (~500 µm) outer shell of N-isopropylacrylamide (NIPA) hydrogel, which has a lower critical solution temperature (LCST) of 32 °C. When a transparent NIPA-shelled capsule is heated above this LCST, it turns pearlescent. The effect is reversible, with the transparent state being recovered upon cooling. This is the first example of reversible pearlescence in any solid. Specular reflectance measurements show that the pearlescence of the capsules is comparable to that of natural pearls. Pearlescence is not observed in NIPA hydrogels; it arises only in NIPA-shelled capsules, and that too only when the shell is thin. Above its LCST, the NIPA shell shrinks and gets stretched, and nanoscale NIPA-rich domains arise within this shell, which induce the pearlescence. This study sheds fresh insight into the nature of pearlescence, on how it can be tuned, and on how this property can be introduced into various soft materials.
  • Thumbnail Image
    Item
    Cell-Like Capsules with “Smart” Compartments
    (Wiley, 2023-03-09) Ahn, So Hyun; Borden, Leah K.; Bentley, William E.; Raghavan, Srinivasa R.
    Eukaryotic cells have inner compartments (organelles), each with distinct properties and functions. One mimic of this architecture, based on biopolymers, is the multicompartment capsule (MCC). Here, MCCs in which the inner compartments are chemically unique and “smart,” i.e., responsive to distinct stimuli in an orthogonal manner are created. Specifically, one compartment alone is induced to degrade when the MCC is contacted with an enzyme while other compartments remain unaffected. Similarly, just one compartment gets degraded upon contact with reactive oxygen species generated from hydrogen peroxide (H2O2). And thirdly, one compartment alone is degraded by an external, physical stimulus, namely, by irradiating the MCC with ultraviolet (UV) light. All these specific responses are achieved without resorting to complicated chemistry to create the compartments: the multivalent cation used to crosslink the biopolymer alginate (Alg) is simply altered. Compartments of Alg crosslinked by Ca2+ are shown to be sensitive to enzymes (alginate lyases) but not to H2O2 or UV, whereas the reverse is the case with Alg/Fe3+ compartments. These results imply the ability to selectively burst open a compartment in an MCC “on-demand” (i.e., as and when needed) and using biologically relevant stimuli. The results are then extended to a sequential degradation, where compartments in an MCC are degraded one after another, leaving behind an empty MCC lumen. Collectively, this work advances the MCC as a platform that not only emulates key features of cellular architecture, but can also begin to capture rudimentary cell-like behaviors.
  • Thumbnail Image
    Item
    Electrically Induced Bursting of Aqueous Capsules Made from Biopolymers: ‘Switching On’ the Release of Payloads
    (Wiley, 2022-10-30) Gargava, Ankit; Xu, Wenhao; Raghavan, Srinivasa R.
    The use of electric fields to stimulate the delivery of drugs or other active ingredients is of great interest for wearable electronics and other applications. Most attempts at electrically induced delivery with soft materials in water have focused on electronically conducting polymers (e.g., polypyrroles) or conductive nanocomposites (e.g., polymers with carbon nanotubes). Here, electrical responses are induced even in structures made from nonconducting biopolymers that are widely available, biocompatible, and biodegradable. The materials studied here are spherical capsules created from the anionic polysaccharide alginate by cross-linking with cations like Ca2+ or Cu2+. When these capsules are placed in an aqueous solution and subjected to an electric field (direct current) of ≈8 V cm−1, they deform within a couple of minutes and then burst and disintegrate into pieces within ≈5 min. Capsules across a range of length scales (200 µm to 2 cm) respond in the above manner, and the electroresponse persists even if the capsules are embedded in a nonionic gel matrix. This electroresponse is due to electrophoretic migration of charged species (ions and/or polyelectrolyte chain-segments) within (or out of) the capsules. In an alginate capsule, the cations are induced to migrate away from the positive electrode, which creates a weakly cross-linked region of the capsule that swells appreciably. This anisotropic swelling continues until the capsule eventually bursts. Applications for electroresponsive capsules that highlight the spatial and temporal accuracy possible with an electrical stimulus are discussed. The bursting of capsules can be used to release solutes loaded inside these structures. Also, even the deformation of intact capsules can be used to create electrically actuatable valves, where a liquid flows out through the valve only when a capsule plug is dislodged.