A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells
    (MDPI, 2019-07-29) Diao, Weiping; Saxena, Saurabh; Han, Bongtae; Pecht, Michael
    Lithium-ion batteries typically exhibit a transition to a more rapid capacity fade trend when subjected to extended charge–discharge cycles and storage conditions. The identification of the knee point can be valuable to identify the more severe degradation trend, and to provide guidance when scheduling battery replacements and planning secondary uses of the battery. However, a concise and repeatable determination of a knee point has not been documented. This paper provides a definition of the knee point which can be used as a degradation metric, and develops an algorithm to identify it. The algorithm is implemented on various data cases, and the results indicate that the approach provides repeatable knee point identification.