A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
Search Results
Item Modeling Heterogeneous SoCs with SystemC: A Digital/MEMS Case Study(2006-10) Varma, Ankush; Afridi, M. Yaqub; Akturk, Akin; Klein, Paul; Hefner, Allen R.; Jacob, BruceDesigners of SoCs with non-digital components, such as analog or MEMS devices, can currently use high-level system design languages, such as SystemC, to model only the digital parts of a system. This is a significant limitation, making it difficult to perform key system design tasks — design space exploration, hardware-software co-design and system verification — at an early stage. This paper describes lumped analytical models of a class of complex non-digital devices — MEMS microhotplates — and presents techniques to integrate them into a SystemC simulation of a heterogeneous System-on-a-Chip (SoC). This approach makes the MEMS component behavior visible to a full-system simulation at higher levels, enabling realistic system design and testing. The contributions made in this work include the first SystemC models of a MEMS-based SoC, the first modeling of MEMS thermal behavior in SystemC, and a detailed case study of the application of these techniques to a real system. In addition, this work provides insights into how MEMS device-level design decisions can significantly impact system level behavior; it also describes how full-system modeling can help detect such phenomena and help to address detected problems early in the design flow.Item Thermal and performance modeling of nanoscale mosfets, carbon nanotube devices and integrated circuits(2006-05-31) Akturk, Akin; Goldsman, Neil; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)We offer new paradigms for electronic devices and digital integrated circuits (ICs) in an effort to overcome important performance threatening problems such as self heating. To investigate chip heating, we report novel methods for predicting the thermal profiles of complex ICs at the resolution of a single device. We resolve device and IC temperatures self-consistently, with individual device performances, while accounting for IC layout and software application details. At the device level, we calculate performance and generated heat details. We then extend these performance figures to the overall chip using a stochastic or Monte Carlo type methodology. Next, at the IC level, we solve for the device temperatures using the chip's layout and application software details. Here, we apply our mixed-mode algorithm to two-dimensional (planar) and three-dimensional ICs. To relieve thermal stresses and performance degradation in specific areas of extreme heating or hot spots, we offer design strategies using thermal contacts or different IC layouts. Moreover, we also show chips that we had designed and fabricated through IC fabrication clearing house MOSIS for experimental investigations. We also investigate carbon nanotubes (CNTs) and CNT embedded MOSFETs as new device paradigms for future electronic circuits. To examine the effects of CNTs on device performance, we develop a CNT Monte Carlo simulator, and determine scattering rates and CNT electron transport. Here, we report position-dependent velocity oscillations and length effects in semiconducting single-walled zig-zag carbon nanotubes. Our calculated results indicate velocity oscillations in the Terahertz range, which approaches phonon frequencies. This may facilitate new high frequency RF device and circuit designs, opening new paradigms in communication networks. Furthermore, to obtain device performance figures for MOSFETs that embed CNTs in their channels, our device solver determines interactions between the CNT and silicon (Si) by obtaining quantization and transport effects on the tube and the Si, and at the CNT-Si barrier. We predict that the CNT-MOSFET yields a better performance than the traditional MOSFET. Especially, CNT-MOSFETs employing lower diameter tubes exhibit improved performance capabilities. We also perform similar analyses for CNT embedded SOI-MOSFETs.