Department of Veterinary Medicine

Permanent URI for this communityhttp://hdl.handle.net/1903/2231

Browse

Search Results

Now showing 1 - 10 of 11
  • Item
    ZIKA VIRUS RECRUITS CELLULAR PROTEINS TO SUPPORT ITS REPLICATION
    (2024) Chang, Peixi; Zhang, Yanjin YJ; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Zika virus (ZIKV) is a mosquito-borne pathogen with a massive impact on global public health due to its association with severe neurological complications, including microcephaly in newborns and Guillain-Barré syndrome in adults. The ZIKV epidemic in the Americas in 2015-2016 and its continuing spread in tropical regions have highlighted the urgent need to understand the molecular mechanisms of viral replication to develop effective antiviral strategies. However, many aspects of how ZIKV interacts with host cells remain unclear. This study identifies and characterizes host factors contributing to ZIKV replication. First, karyopherin alpha 6 (KPNA6) contributes to ZIKV replication by interacting with the ZIKV non-structural protein NS2B. Characterization and mutational analyses identified two essential amino acid residues within NS2B that are critical for interacting with KPNA6. The substitution of these two residues of NS2B in an infectious ZIKV cDNA clone resulted in a significant reduction in viral replication, suggesting that the NS2B-KPNA6 interaction plays a vital role in the viral life cycle. Further studies found that KPNA6 contributes to ZIKV RNA synthesis. Mass spectrometry analysis of the KPNA6 interactome showed that KPNA6 interacts with proteins involved in RNA synthesis, suggesting that ZIKV recruits these factors by promoting KPNA6-binding. Second, this study developed an effective method to isolate the ZIKV replication complex, a membranous structure where viral RNA is synthesized. Proteomic analysis of the isolated complex led to identifying numerous host proteins associated with the viral replication machinery. Among these proteins, human replication factor C subunit 2 (RFC2), an accessory factor involved in DNA replication and repair, was discovered to facilitate ZIKV replication, making it a potential target for therapeutic interventions. In conclusion, this study reveals crucial host factors essential for ZIKV infection and replication and provides insights into the ZIKV-cell interactions. These findings offer new possibilities for developing novel antiviral strategies for controlling future viral outbreaks.
  • Thumbnail Image
    Item
    Characterization of the GBF1-Arf1 axis in enterovirus RNA replication
    (2024) Gabaglio Velazquez, Samuel Maria; Belov, George; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Enterovirus genus includes many known and emerging pathogens, such as poliovirus, enteroviruses A71 and D68, rhinoviruses, and others. Enterovirus infection induces the massive remodeling of intracellular membranes and the development of specialized domains harboring viral replication complexes, called replication organelles. The cellular protein Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) is essential for the replication of enteroviruses, but its molecular role in the replication process is unclear. In uninfected cells, GBF1 activates small GTPases of the Arf family and coordinates multiple steps of membrane metabolism, including the functioning of the cellular secretory pathway. The nonstructural protein 3A of poliovirus and other enteroviruses directly interact with and recruits GBF1 to the replication organelles. Moreover, enterovirus infection induces the massive recruitment of all isoforms of the small cellular Arf GTPases to the replication organelles, but the mechanistic role of these proteins in the replication process is not understood either. Here, we sought to characterize the role of the GBF1-Arf1 axis in enterovirus replication. First, we systematically investigated the conserved elements of GBF1 to understand which determinants are important to support poliovirus replication. We demonstrated that multiple GBF1 mutants inactive in cellular metabolism could still be fully functional in the replication complexes. Our results showed that the Arf-activating property, but not the primary structure of the Sec7 catalytic domain is essential for viral replication. They also suggest a redundant mechanism for recruiting GBF1 to the replication sites. This mechanism depends not only on the direct interaction of the protein with the viral protein 3A but also on elements located in the noncatalytic C-terminal domains of GBF1. Next, we investigated the distribution of viral proteins and Arf1 on the replication organelles and their biochemical environment. Pulse-labeling of viral RNA with 5-ethynyl uridine showed that active RNA replication is associated with Arf1-enriched membranes. We observed that Arf1 forms isolated microdomains in the replication organelles and that viral antigens are localized in both Arf1-depleted and Arf1-enriched microdomains. We investigated the viral protein composition of the Arf1-enriched membranes using peroxidase-based proximity biotinylation. Viral protein biotinylation was detected as early as 3 h.p.i., and the non-cleaved fragments of the viral polyprotein were overrepresented in the Arf1-enriched domains. Furthermore, we show that after 4 h.p.i. viral proteins could be efficiently biotinylated only upon digitonin permeabilization of the replication organelle membranes, while such permeabilization inhibited the Arf1 biotinylation signal at the Golgi in non-infected cells. Together, these data support a model that recruitment of GBF1 to the replication organelles generates foci of activated Arfs on the membranes, which further differentiate into specific microdomains through the recruitment of a specific complex of viral proteins and cellular Arf effectors likely needed to establish the lipid and protein composition required for viral replication.
  • Thumbnail Image
    Item
    MOLECULAR DISSECTION OF BORRELIA BURGDORFERI BB0323 PROTEIN COMPLEX SUPPORTING MICROBIAL BIOLOGY, INFECTIVITY, AND AS A NOVEL THERAPEUTIC TARGET
    (2023) Bista, Sandhya; Pal, Utpal Dr.; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Lyme disease (LD), also known as Lyme borreliosis, is the most common vector-borne disease in the United States, caused by the gram-negative bacteria of the Borrelia burgdorferi sensu lato group. This atypical bacterial group features distinct genomic and antigenic elements, does not possess any classical toxins, and the pathogenesis of LD is primarily due to the immune activity of the host. These multi-organotrophic spirochetes can elicit severe clinical complications in susceptible hosts, including neuroborreliosis, carditis, and arthritis. If diagnosed early, the disease can be treated with a conventional antibiotic regimen; however, persistent, or relapsing symptoms later develop in a subset of patients. Six months to a year after the antibiotic treatment, up to 20% of the patients can experience various subjective symptoms pertaining to pain, cognitive dysfunction, or other neurological complications, collectively termed Post Treatment Lyme Disease Syndrome (PTLDS). The diagnosis, etiology, and treatment of PTLDS remain currently unknown. To better understand microbial pathogenesis, we have characterized a select set of structurally unique spirochete gene products that act as novel virulence determinants and support microbial infection in mammals. The current study focused on the BB0323 protein of B. burgdorferi, a unique and multifunctional virulence determinant undergoing a complex post-translational maturation process. The maturation, stability, and functions of BB0323 require multifaceted protein-protein interaction (PPI) events involving specific B. burgdorferi proteins, such as a protease-chaperone called BbHtrA, and a membrane-associated protein of unknown function annotated as BB0238. In our current study, we have further dissected the biological significances of the protein-protein interaction complex (PPI), either involving BbHtrA: BB0323 and BB0323:BB0238. The latter PPI event was more thoroughly investigated for its role in spirochete biology and infection and as a novel target for therapeutic intervention against B. burgdorferi infection. We identified a cleavage site where BB0323 full-length protein cleaves into N and C termini by BbHtrA. Subsequently, we have introduced point mutations in the recombinant BB0323 (at the cleavage site for BbHtrA- NL residues replaced with AA), as well as generated an isogenic B. burgdorferi isolates (Bbbb0323NL) with the point mutations in native BB0323. Further analyses show that the cleavage site mutated BB0323 protein could not be processed by the recombinant BbHtrA. Notably, despite the inability of BbHtrA to process BB0323 in vitro, within Bbbb0323NL, BB0323 could indeed be processed to some degree, which yields a basal level of mature N-terminal protein. Notably, in these B. burgdorferi cells, at least two other BB0323 polypeptides of lower molecular weight (less than 27 kDa of mature N-term BB0323) were also produced, possibly due to the action of BbHtrA on non-specific sites. However, the Bbbb0323NL mutants were non-infectious in the murine host, demonstrating the importance of precise cleavage of BB0323 full-length protein and optimal production of N-terminal, which needed to form a complex with another PPI partner, BB0238. Overall, these results further underscored the event of BbHtrA and BB0323 interaction for processing the latter protein as an essential prerequisite for spirochete infection in mammals. Our previous studies have shown that BB0323 N-terminal and BB0238 interact and post-translationally stabilize each other. We used an interaction-deficient borrelial mutant, replacing the BB0323 interaction motif in BB238 (termed as bb0238 Delta Interaction Motif, or bb0238∆IM), which despite showing no growth defects in vitro or other abnormalities, is unable to infect mammalian host. We, therefore, explored the possibility of using the BB0323:BB0238 complex as a novel therapeutic target to combat B. burgdorferi infection in mammals. We first examined whether bb0238∆IM mutants (without interaction motifs) can persist in mice for a long term or could be acquired by naïve ticks. The results show that, unlike the wild type or another B. burgdorferi mutant, The bb0238∆IM could not establish the infection in mice and, as a result, could not be acquired by the ticks, suggesting blockade of BB0323:BB0238 interaction by small molecules could be a novel therapeutic approach to combat incidence of LD. An AlphaLisa assay platform was developed in our lab to monitor BB0323-BB0238 PPI on a high-throughput basis using 384-well microtiter plates, which was then miniaturized to 1536 well at the National Center for Advancing Translational Sciences (NCATS) in a collaborative effort. An AlphaLisa quantitative HTS later screened several small molecule libraries available at NCATS, which were further filtered by counter assays, and a selected set of 84 compounds was tested in a secondary, cell-based assay for cell-permeable compounds that impair BB0323-BB0238 interaction with spirochete cells. A B. burgdorferi cell-based assay comprising a dot-blot assay and regrowth assay was developed to examine the PPI inhibitory activities of the molecules inside the cells. We finally selected one of the compounds, Lomibuvir, for the in vivo studies and demonstrated its PPI inhibitory activity in an in vitro experiment. A pharmacokinetic study in mice showed an increase in the level of the compound in plasma and liver over 21 days. Additional in vivo efficacy studies of Lomibuvir to reduce B. burgdorferi infection in mice were performed using vehicle and ceftriaxone as negative and positive controls, respectively. The results showed that the bacterial load in the skin and heart of the mice was significantly lower in the Lomibuvir-treated group, as compared to the vehicle-treated animals; however, the effect was not as dramatically effective as the antibiotic (ceftriaxone) treatment groups. While future medicinal chemistry approaches could be adopted to further enhance the impact of Lomibuvir as an anti-B. burgdorferi agent, to the best of knowledge, is the first proof-of-concept study that highlights the utility of targeting borrelial PPI events as a possible therapeutic target of Lyme disease.
  • Thumbnail Image
    Item
    A NOVEL IXODES SCAPULARIS PROTEIN DICTATES TICK HEMATOPHAGY AND CUTICLE INTEGRITY, IMPACTING TICK DEVELOPMENT
    (2023) DUTTA, SHRABONI; Pal, Utpal Dr.; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Ticks are prevalent throughout the world and are capable of transmitting a variety of pathogens (e.g., bacteria, protozoa, and viruses) to humans. Incidence rates for tick-borne diseases (TBD) are also increasing globally, and effective vaccinations to combat tick infestations and TBD transmission remain a critical unmet need. Of the six major tick genera that spread human illnesses worldwide, Ixodes ticks are the most prevalent. Specifically, Ixodes scapularis (also known as the blacklegged or deer tick) is an obligate blood-feeding arthropod that transmits several human and animal pathogens that include Borrelia burgdorferi sensu lato complex – the causative agent for Lyme disease. Unlike many hematophagous insects and soft ticks, I. scapularis (hard ticks) remain attached to their hosts for several days and are capable of uptaking bloodmeals that are 100 times greater than their initial body weight. A large and nutrient-dense bloodmeal is essential for their sub-adult and adult development processes and fecundity. However, the molecular and cellular processes that regulate tick blood feeding (hematophagy) and development have not been extensively elucidated. Therefore, our major objective is to characterize tick molecular components that are critical in the tick parasitism and life cycle in order to develop new strategies to combat tick infestations and spread of tick-borne diseases. Herein, we describe the structural and functional properties of a newly identified I. scapularis protein isolated from the partially fed nymphal ticks. Although the protein displays minor homology to proteins of known functions, structurally, it resembles some features of arthropod Odorant Binding Proteins (OBP). Therefore, we refer to this protein as, Ixodes Gut OBP (IGOBP). We show that the knockdown of IGOBP via RNA interference in ticks results in impaired blood feeding (hematophagy) and significantly decreases their post-fed weights. In addition, systemic IGOBP knockdown gives rise to aberrant phenotypes, significantly reduces tick molting rate, and compromises the structural integrity of the cuticle, specifically the flexible alloscutum components. Notably, IGOBP knockdown has profound effects on the molting efficacy and fitness of females than males. This is likely due to the fact that female adults consume a greater volume of bloodmeal than male adults, necessitating a more pronounced expansion of the alloscutum. Subsequently, our RNA sequencing data identifies multiple genes whose expressions are regulated by IGOBP. The underlying mechanism of possible IGOBP or associated gene functions may aid in identifying future targets for anti-tick vaccines. In summary, our studies characterized a novel I. scapularis protein revealing that the protein is essential for tick hematophagy and development. To the best of our knowledge, this is the first characterization of a tick odorant-binding protein (OBP), using structural and functional genomic tools that unearthed the unique and possibly multifunctional role of IGOBP in vector biology and parasitism. We anticipate that the presented data will enhance our fundamental understanding of tick biology and contribute to the development of potential anti-tick measures.
  • Thumbnail Image
    Item
    STRUCTURE-FUNCTION ANALYSES OF AN ESSENTIAL VIRULENCE DETERMINANT OF THE LYME DISEASE PATHOGEN
    (2022) Foor, Shelby Dimity; Pal, Utpal; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Lyme Disease (LD) is a tick-borne disease caused by a group of gram-negative-like spirochetal pathogens called Borrelia burgdorferi sensu lato. The number of cases reported in the United States have dramatically increased with CDC estimating 476,000 cases annually. This multifaceted infection can spread throughout the entire body, causing clinical complications of the central nervous system, joint and heart. Early antibiotic treatment is available and effective; however, untreated patients can develop chronic symptoms, and even after antibiotics, symptoms of unknown etiology and pathogenesis can develop into post-treatment Lyme disease syndrome (PTLDS). The enzootic life cycle of B. burgdorferi is maintained typically between a small rodent and the Ixodes tick vector, where transmission occurs during tick feeding on a host. Infection establishes after B. burgdorferi is deposited in the dermis and undergoes the required shift in its protein expression profile necessary to support spirochete persistence and pathology, often highlighting protein targets for development of diagnostic, therapeutic, and preventative measures. Two such proteins identified, BB0238 and BB0323, serve as novel virulence determinants and are essential for mammalian infection. These two proteins directly interact, mutually stabilize each other post-translationally, and form an essential complex required for infection; however, their precise functions remain undetermined. In collaborative efforts, we predicted a two-domain structure of BB0238. The N-terminal domain was predicted by AI methods to harbor an antiparallel helix-turn-helix motif (HTH) followed by a third helix and a low-confidence predicted meandering segment. The C-terminal domain structure was determined by X-ray crystallography as well as predicted with high confidence to adopt an α+β fold that resembles closely that of the nuclear transport factor 2 (NTF2) superfamily. While full-length BB0238 lacks homology to singular proteins of known functions, the individual N- and C-terminal regions display structural homology to non-bacterial proteins, particularly to eukaryotic sorting, or transport proteins, suggesting that BB0238 supports an unconventional function in spirochetes. We discovered that BB0238 binds another borrelial protein annotated as BB0108, orthologs of two bacterial chaperones and foldases, the extracellular membrane anchored PrsA, and the periplasmic SurA. This identified interaction requires further investigation, however, may be important for BB0238 protein stability or assist with the novel BB0238 function discovered herein, which regulates proteolytic processing of BB0323. Furthermore, We show that key amino acid residues within the HTH stabilize BB0238 in an environment-specific manner, influence its oligomerization properties, and facilitate tick-to-mouse transmission by aiding spirochete evasion of host cellular immunity, underscoring BB0238’s ability to support microbial establishment during early mammalian infection. Together, these studies highlight the divergent evolution of multidomain spirochete proteins involved in multiplex protein-protein interactions, possibly facilitating multiple functions, which support pathogen survival and thus, represent novel targets for vaccine and therapeutic development against Lyme disease.
  • Thumbnail Image
    Item
    IDENTIFICATION AND ENGINEERING BACTERIOPHAGE ENDOLYSINS FOR INACTIVATION OF GRAM-POSITIVE SPORE-FORMING BACILLI
    (2018) Etobayeva, Irina V.; Nelson, Daniel C.; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation concentrates on the study of the antibacterial potential of bacteriophage-encoded endolysins derived from phages that infect the Gram-positive Bacillus cereus sensu lato group. Bacteriophage-encoded endolysins are peptidoglycan hydrolases that have been identified as important factors in the phage life cycle. Endolysins are encoded by phage late genes during an intracellular infection cycle to lyse the bacterial cell wall from within and allow phage progeny release. Endolysins derived from phages of Gram-positive bacterial hosts are equipped with an enzymatic domain that hydrolyzes conserved covalent bonds in bacterial peptidoglycan, and a cell wall binding domain that ensures proper attachment of endolysins to bacilli. In this study three novel endolysins, PlyP56, PlyN74, and PlyTB40 have been discovered and identified. The biochemical analysis shows that all three endolysins have relatively broad antimicrobial activity against organisms of the B. cereus group with the optimal lytic activity at physiological pH (pH 7.0–8.0), over a broad temperature range (4–55°C), and at low concentrations of NaCl (<50 mM). The domain shuffling engineering studies were undertaken to observe enhancements of bacteriolytic properties of chimeric lysins that retained their specificity to B. cereus species. Finally, these studies have identified a new development in lysis of peptidoglycan of Gram-positive B. cereus group of organisms by phage-encoded endolysins. When grown to stationary phase, bacilli, especially, in overnight cultures become more resistant to lysis despite the evidence that the cell wall domains bind the bacterial surface. In light of these findings, I hypothesize that B. cereus group of species have evolved complex behaviors to interact with phage by modulating surface associated secondary polymers throughout the maturation of the bacilli in order to render them more resistant to the lytic action of phage encoded endolysins, which, contributes to bacterial survival from phage infection.
  • Thumbnail Image
    Item
    Antagonizing JAK-STAT signaling by porcine reproductive and respiratory syndrome virus
    (2018) Yang, Liping; Zhang, Yanjin; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway is activated by numerous cytokines. JAK-STAT pathways involve in regulation of cell growth, proliferation, differentiation, apoptosis, angiogenesis, immunity and inflammatory response. Because of their significance in immune response, they are often targeted by pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV causes reproductive failure in sows and severe respiratory disease in pigs of all ages. A typical feature of the immune response to PRRSV infection in pigs is delayed production and low titer of virus neutralizing antibodies, and weak cell-mediated immune response. One possible reason for the weak protective immune response is that PRRSV interferes with innate immunity and modulates cytokine signaling, including JAK-STAT pathways. The objective of this project was to elucidate the mechanisms of PRRSV interference with JAK-STAT2 and JAK-STAT3 signaling. This study demonstrates that PRRSV antagonizes interferon (IFN)-activated JAK-STAT2 signaling and oncostatin M (OSM)-activated JAK-STAT3 pathway via inducing STAT2 and STAT3 degradation. Mechanistically, PRRSV non-structural protein 11 (nsp11) and nsp5 induce the degradation of STAT2 and STAT3, respectively, via the ubiquitin-proteasome pathway. Notably, PRRSV manipulates karyopherin alpha 6 (KPNA6), an importin that is responsible for STAT3 nuclear translocation in the JAK-STAT signaling, to facilitate viral replication. Knockdown of KPNA6 expression led to significant reduction in PRRSV replication. These data demonstrate that PRRSV interferes with different JAK-STAT pathways to evade host antiviral response while harnessing cellular factors for its own replication. These findings provide new insights into PRRSV-cell interactions and its molecular pathogenesis in interference with the host immune response, and facilitate the development of novel antiviral therapeutics.
  • Thumbnail Image
    Item
    METABOLIC VIRULENCE DETERMINANTS AND RAPID MOLECULAR DIAGNOSTICS OF PATHOGENIC SPIROCHETES
    (2016) Backstedt, Brian; Pal, Utpal; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Borrelia burgdorferi and Leptospira interrogans are pathogenic spirochetes that elicit serious health threats, termed as Lyme disease and leptospirosis. Key areas of spirochete research involve a better understanding of their intriguing biology and infection, including identification of novel virulence factors and improvements in diagnostic and preventive methods. Notably, certain bacterial metabolic enzymes are surface-exposed, having evolved to acquire additional functions referred to as protein moonlighting that contributes in microbial virulence. Comparative genome analysis revealed that certain components of sugar metabolism pathways are either absent or seemingly inactive in pathogenic spirochetes, which were studied herein for their potential roles as metabolic virulence factors. Of nine borrelial enzymes investigated, only phosphomannose isomerase (PMI) was found to be surface-exposed and remained enzymatically active in the spirochete outer membrane. PMI is critical for mannose metabolism and facilitates the interconversion of fructose 6-phosphate and mannose-6-phosphate, although its occurrence in borrelial surface remains enigmatic. PMI may provide a critical function for B. burgdorferi viability as it is constitutively expressed and all attempts to create genetic mutants remained unsuccessful. Active immunization studies using recombinant PMI did not influence the outcome of infection within tick or murine hosts, although a significant reduction in bacterial levels within the joints of mice was recorded, suggesting its involvement in spirochete persistence in a tissue-specific manner. Despite substantial advancement, the development of more effective diagnostics for leptospirosis and Lyme disease still remains a critical need since human vaccines are unavailable. Antibiotic treatment can resolve these infections but is most effective when administered early during infection, prior to pathogen dissemination to distant organs. As diagnostic methods for spirochete infection still depends on ineffective and antiquated technologies, we sought to develop novel RNA-based assays for better detection of early spirochete infection. Results indicated that targeting specific regions of 16S and 23S ribosomal RNA targets provided the highest possible sensitivity and specificity of detection, which was far superior to current serological, microbiological or molecular methods used to detect presence of invading pathogens.
  • Thumbnail Image
    Item
    ROLE OF SELECT BORRELIA BURGDORFERI-INDUCIBLE TICK GENE-PRODUCTS IN PATHOGEN PERSISTENCE WITHIN THE VECTOR
    (2015) Smith, Alexis Ayn; Pal, Utpal; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Lyme disease, also known as Lyme borreliosis, a common vector-transmitted illness across the Unites States and Europe, is caused by the pathogen Borrelia burgdorferi, which is transmitted by Ixodes scapularis ticks. While ticks are known to transmit a diverse set of bacterial, protozoan and viral disease agents, there are only limited investigations addressing how Ixodes immune responses influence the survival or persistence of specific pathogens within the tick. In North America, I. scapularis transmits a wide array of human and animal pathogens including a group of pathogenic bacteria, known as Borrelia burgdorferi sensu lato complex. Due to the evolutionary divergence from other bacteria, and the possession of a unique cellular structure, B. burgdorferi cannot be classified as a conventional Gram-positive or Gram-negative bacteria, instead they are classified as a spirochete. Additionally, key pattern recognition molecules or PAMPs, such as lipopolysaccharides and peptidoglycans, are absent or structurally distinct in B. burgdorferi. Thus, the wealth of knowledge generated in other model arthropods, regarding the genesis of host immune responses against classical bacterial pathogens, might not be applicable to B. burgdorferi. The primary goal for this dissertation is to characterize components of the tick immune responses that modulate B. burgdorferi infection and use this information to better understand specific aspects of tick immunity as well as to contribute to the development of new strategies that interfere with pathogen persistence and transmission. The following aims were addressed: assessment of the expression profile of the I. scapularis innate immune transcriptome to identify genes that are induced in the B. burgdorferi-infected vector. Next, a select set of pathogen-inducible gene-products was further studied for their possible harmful or beneficial roles in pathogen persistence in the vector. Based on recent findings in other disease vectors as well data generated within this thesis, I particularly focused on characterization of two select sets of B. burgdorferi-inducible tick gene-products that are potentially involved in maintenance of gut microbe homeostasis (Dual oxidase and peroxidase) and events linked to phagocytosis (Rho GTPase).
  • Thumbnail Image
    Item
    Epidemiological Analysis of Biosecurity Practices and Associated Prevalence of Diseases in Non-Commercial Poultry Flocks
    (2012) Madsen, Jennifer Marie; Tablante, Nathaniel L.; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A cross-sectional study was conducted in backyard poultry flocks among nine counties of Maryland from May 2011 to August 2011. The objective of this study was to obtain baseline data from a survey on biosecurity practices and investigate risk factors associated with positive findings of avian influenza (AI), Newcastle disease (ND), infectious laryngotracheitis (ILT), Mycoplasma gallisepticum (MG), and Salmonella Enteritidis (SE). Serum, tracheal, and cloacal swabs were randomly collected from 262 birds among 39 registered premises. Analysis revealed flock prevalence and seroprevalence respectively for the following: AI (0%, 23%), ND (0%, 23%), ILT (26%, 49%), MG (3%, 13%), SE (0%, ND). Vaccine status could not be confirmed for ND, ILT, or MG. Premises positives were identified by partial nucleotide sequencing. No statistically significant associations were identified, however, AI seroprevalence was positively associated with exposure to waterfowl (Relative Risk [RR] = 3.14, 95% confidence interval [CI] 1.1-8.9) and absence of pest control (RR=2.5; 95% CI, 0.6-10.4).