Department of Veterinary Medicine
Permanent URI for this communityhttp://hdl.handle.net/1903/2231
Browse
2 results
Search Results
Item Host Immune Responses to Fungal Pathogens(2022) Strickland, Ashley Brenda; Shi, Meiqing; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Fungal infections are an increasing threat to global public health. Worldwide, more than one billion fungal infections are diagnosed each year and result in 1.5 million deaths annually. This number is expected to rise as advances in medical care for immunocompromised patients continue to be made. Furthermore, limited antifungal treatment options, coupled with the emergence of new and resistant fungal species, is anticipated to exacerbate this issue. For these reasons, it is essential to understand the dynamic interactions between host and fungus that contribute to fungal pathogenesis. The following work examined the role of IL-27 on T cell regulation in the lungs during infection with Aspergillus fumigatus, and in the brain during infection with Cryptococcus neoformans. In contrast to most infection settings demonstrating that IL-27 is anti-inflammatory, we report that this cytokine is proinflammatory in both the lung and the brain during infection with A. fumigatus and C. neoformans respectively. Genetic ablation of IL-27Rα in mice resulted in higher fungal burdens in the lung during Aspergillus infection and in the brain during Cryptococcus infection. These were associated with reduced IFN-γ production, as well as a fewer CD4+ T cells in target organs. In the case of C. neoformans infection, IL-27 signaling enhanced T cell accumulation by promoting T cell proliferation early during infection, and inhibiting T cell death at later time points. These suggest that IL-27 promotes T cell responses required for fungal clearance during infection with A. fumigatus or C. neoformans. In addition, the work presented here also characterized lung resident macrophage responses during infection with C. neoformans. Here, we report that cryptococcal infection induced the accumulation of CD68hi macrophages in the lungs of infected mice. Approximately 10% of these cells were alveolar macrophages, while nearly 90% were interstitial macrophages. Both of these populations were observed to interact with fungi and upregulated their expression of arginase 1. The absence of either macrophage in transgenic mice, or following pharmacological depletion, significantly reduced fungal burdens in the lungs of mice, indicating that these cells enhance fungal growth and may represent attractive targets aimed at limiting the pathogenesis of C. neoformans.Item IL-27 Negatively Regulates Tip-DC Development during Infection(American Society for Microbiology, 2021-02-16) Liu, Gongguan; Abas, Osama; Fu, Yong; Chen, Yanli; Strickland, Ashley B.; Sun, Donglei; Shi, MeiqingTumor necrosis factor (TNF)/inducible nitric oxide synthase (iNOS)-producing dendritic cells (Tip-DCs) have profound impacts on host immune responses during infections. The mechanisms regulating Tip-DC development remain largely unknown. Here, using a mouse model of infection with African trypanosomes, we show that a deficiency in interleukin-27 receptor (IL-27R) signaling results in escalated intrahepatic accumulation of Ly6C-positive (Ly6C1) monocytes and their differentiation into Tip-DCs. Blocking Tip-DC development significantly ameliorates liver injury and increases the survival of infected IL-27R2/2 mice. Mechanistically, Ly6C1 monocyte differentiation into pathogenic Tip-DCs in infected IL-27R2/2 mice is driven by a CD41 T cell-interferon gamma (IFN-g) axis via cell-intrinsic IFN-g signaling. In parallel, hyperactive IFN-g signaling induces cell death of Ly6C-negative (Ly6C2) monocytes in a cell-intrinsic manner, which in turn aggravates the development of pathogenic Tip-DCs due to the loss of the negative regulation of Ly6C2 monocytes on Ly6C1 monocyte differentiation into Tip-DCs. Thus, IL-27 inhibits the dual-track exacerbation of Tip-DC development induced by a CD41 T cell–IFN-g axis. We conclude that IL-27 negatively regulates Tip-DC development by preventing the cell-intrinsic effects of IFN-g and that the regulation involves CD41 T cells and Ly6C2 monocytes. Targeting IL-27 signaling may manipulate Tip-DC development for therapeutic intervention.