Department of Veterinary Medicine

Permanent URI for this communityhttp://hdl.handle.net/1903/2231

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens
    (MDPI, 2014-12-12) Nan, Yuchen; Nan, Guoxin; Zhang, Yan-Jin
    Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR). Host PRR for RNA viruses include Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I) like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.
  • Thumbnail Image
    Item
    Interference of Apoptosis by Hepatitis B Virus
    (MDPI, 2017-08-18) Lin, Shaoli; Zhang, Yan-Jin
    Hepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.
  • Thumbnail Image
    Item
    Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation
    (MDPI, 2018-04-14) Nan, Yuchen; Wu, Chunyan; Zhang, Yan-Jin
    Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided.
  • Thumbnail Image
    Item
    The Capsid Protein of Hepatitis E Virus Inhibits Interferon Induction via Its N-Terminal Arginine-Rich Motif
    (MDPI, 2019-11-11) Lin, Shaoli; Yang, Yonglin; Nan, Yuchen; Ma, Zexu; Yang, Liping; Zhang, Yan-Jin
    Hepatitis E virus (HEV) causes predominantly acute and self-limiting hepatitis. However, in HEV-infected pregnant women, the case fatality rate because of fulminant hepatitis can be up to 30%. HEV infection is zoonotic for some genotypes. The HEV genome contains three open reading frames: ORF1 encodes the non-structural polyprotein involved in viral RNA replication; ORF2 encodes the capsid protein; ORF3 encodes a small multifunctional protein. Interferons (IFNs) play a significant role in the early stage of the host antiviral response. In this study, we discovered that the capsid protein antagonizes IFN induction. Mechanistically, the capsid protein blocked the phosphorylation of IFN regulatory factor 3 (IRF3) via interaction with the multiprotein complex consisting of mitochondrial antiviral-signaling protein (MAVS), TANK-binding kinase 1 (TBK1), and IRF3. The N-terminal domain of the capsid protein was found to be responsible for the inhibition of IRF3 activation. Further study showed that the arginine-rich-motif in the N-terminal domain is indispensable for the inhibition as mutations of any of the arginine residues abolished the blockage of IRF3 phosphorylation. These results provide further insight into HEV interference with the host innate immunity.
  • Thumbnail Image
    Item
    Interference of Apoptosis by Hepatitis B Virus
    (MDPI, 2017-08-18) Lin, Shaoli; Zhang, Yan-Jin
    Hepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.
  • Thumbnail Image
    Item
    Sustaining Interferon Induction by a High-Passage Atypical Porcine Reproductive and Respiratory Syndrome Virus Strain
    (Nature Publishing Group, 2016-11-02) Ma, Zexu; Yu, Ying; Xiao, Yueqiang; Opriessnig, Tanja; Wang, Rong; Yang, Liping; Nan, Yuchen; Samal, Siba K.; Halbur, Patrick G.; Zhang, Yan-Jin
    Porcine reproductive and respiratory syndrome virus (PRRSV) strain A2MC2 induces type I interferons in cultured cells. The objective of this study was to attenuate this strain by serial passaging in MARC-145 cells and assess its virulence and immunogenicity in pigs. The A2MC2 serially passaged 90 times (A2MC2-P90) retains the feature of interferon induction. The A2MC2-P90 replicates faster with a higher virus yield than wild type A2MC2 virus. Infection of primary pulmonary alveolar macrophages (PAMs) also induces interferons. Sequence analysis showed that the A2MC2-P90 has genomic nucleic acid identity of 99.8% to the wild type but has a deletion of 543 nucleotides in nsp2. The deletion occurred in passage 60. The A2MC2-P90 genome has a total of 35 nucleotide variations from the wild type, leading to 26 amino acid differences. Inoculation of three-week-old piglets showed that A2MC2-P90 is avirulent and elicits immune response. Compared with Ingelvac PRRS® MLV strain, A2MC2-P90 elicits higher virus neutralizing antibodies. The attenuated IFN inducing A2MC2-P90 should be useful for development of an improved PRRSV vaccine.