Department of Veterinary Medicine
Permanent URI for this communityhttp://hdl.handle.net/1903/2231
Browse
3 results
Search Results
Item Molecular characterization and complete genome sequence of avian paramyxovirus type 4 prototype strain duck/Hong Kong/D3/75(Springer Nature, 2008-10-20) Nayak, Baibaswata; Kumar, Sachin; Collins, Peter L; Samal, Siba KAvian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds throughout the world. All APMVs, except avian metapneumovirus, are classified in the genus Avulavirus of the family Paramyxoviridae. At present, the APMVs of genus Avulavirus are divided into nine serological types (APMV 1–9). Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. Very little is known about the molecular characteristics and pathogenicity of APMV 2–9. As a first step towards understanding the molecular genetics and pathogenicity of APMV-4, we have sequenced the complete genome of APMV-4 strain duck/Hong Kong/D3/75 and determined its pathogenicity in embryonated chicken eggs. The genome of APMV-4 is 15,054 nucleotides (nt) in length, which is consistent with the "rule of six". The genome contains six non-overlapping genes in the order 3'-N-P/V-M-F-HN-L-5'. The genes are flanked on either side by highly conserved transcription start and stop signals and have intergenic sequences varying in length from 9 to 42 nt. The genome contains a 55 nt leader region at 3' end. The 5' trailer region is 17 nt, which is the shortest in the family Paramyxoviridae. Analysis of mRNAs transcribed from the P gene showed that 35% of the transcripts were edited by insertion of one non-templated G residue at an editing site leading to production of V mRNAs. No message was detected that contained insertion of two non-templated G residues, indicating that the W mRNAs are inefficiently produced in APMV-4 infected cells. The cleavage site of the F protein (DIPQR↓F) does not conform to the preferred cleavage site of the ubiquitous intracellular protease furin. However, exogenous proteases were not required for the growth of APMV-4 in cell culture, indicating that the cleavage does not depend on a furin site. Phylogenic analysis of the nucleotide sequences of viruses of all five genera of the family Paramyxoviridae showed that APMV-4 is more closely related to the APMVs than to other paramyxoviruses, reinforcing the classification of all APMVs in the genus Avulavirus of the family Paramyxoviridae.Item Experimental infection of hamsters with avian paramyxovirus serotypes 1 to 9(Springer Nature, 2011-02-23) Samuel, Arthur S; Subbiah, Madhuri; Shive, Heather; Collins, Peter L; Samal, Siba KAvian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds throughout the world and are separated into nine serotypes (APMV-1 to -9). Only in the case of APMV-1, the infection of non-avian species has been investigated. The APMVs presently are being considered as human vaccine vectors. In this study, we evaluated the replication and pathogenicity of all nine APMV serotypes in hamsters. The hamsters were inoculated intranasally with each virus and monitored for clinical disease, pathology, histopathology, virus replication, and seroconversion. On the basis of one or more of these criteria, each of the APMV serotypes was found to replicate in hamsters. The APMVs produced mild or inapparent clinical signs in hamsters except for APMV-9, which produced moderate disease. Gross lesions were observed over the pulmonary surface of hamsters infected with APMV-2 & -3, which showed petechial and ecchymotic hemorrhages, respectively. Replication of all of the APMVs except APMV-5 was confirmed in the nasal turbinates and lungs, indicating a tropism for the respiratory tract. Histologically, the infection resulted in lung lesions consistent with bronchointerstitial pneumonia of varying severity and nasal turbinates with blunting or loss of cilia of the epithelium lining the nasal septa. The majority of APMV-infected hamsters exhibited transient histological lesions that self resolved by 14 days post infection (dpi). All of the hamsters infected with the APMVs produced serotype-specific HI or neutralizing antibodies, confirming virus replication. Taken together, these results demonstrate that all nine known APMV serotypes are capable of replicating in hamsters with minimal disease and pathology.Item Sequence analysis of fusion protein gene of Newcastle disease virus isolated from outbreaks in Egypt during 2006(2011-05-18) Mohamed, Mahmoud HA; Kumar, Sachin; Paldurai, Anandan; Samal, Siba KBackground: Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. The F protein cleavage site sequence is a well-characterized determinant of NDV pathogenicity in chickens. In this study, the sequences of fusion protein (F) gene of three Newcastle disease virus (NDV) strains isolated from outbreak in chickens in the Al-Sharkia province of Egypt in 2006 were determined. Findings: The viral genomic RNAs were extracted from the infective allantoic fluid and F gene is amplified using primer sets designed from the available sequences of NDV strains from GenBank. The pathogenicity of NDV strains was determined by three internationally recognized tests mean death time, intracerebral pathogenicity index, and intravenous pathogenicity index. The phylogenetic analysis showed that the Egypt isolates are closely related with the genotype II of class II NDV strains. Conclusions: The sequences of the F genes of the 2006 Egypt isolates are closely related to that of the 2005 Egypt isolate from the same province suggesting that these strains are probably circulating in the vaccinated bird population in Egypt until development of an outbreak.