College of Behavioral & Social Sciences
Permanent URI for this communityhttp://hdl.handle.net/1903/8
The collections in this community comprise faculty research works, as well as graduate theses and dissertations..
Browse
6 results
Search Results
Item A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation(MDPI, 2020-01-03) Wang, Dongdong; Liang, Shunlin; Zhang, Yi; Gao, Xueyuan; Brown, Meredith G. L.; Jia, AolinSurface downward shortwave radiation (DSR) and photosynthetically active radiation (PAR), its visible component, are key parameters needed for many land process models and terrestrial applications. Most existing DSR and PAR products were developed for climate studies and therefore have coarse spatial resolutions, which cannot satisfy the requirements of many applications. This paper introduces a new global high-resolution product of DSR (MCD18A1) and PAR (MCD18A2) over land surfaces using the MODIS data. The current version is Collection 6.0 at the spatial resolution of 5 km and two temporal resolutions (instantaneous and three-hour). A look-up table (LUT) based retrieval approach was chosen as the main operational algorithm so as to generate the products from the MODIS top-of-atmosphere (TOA) reflectance and other ancillary data sets. The new MCD18 products are archived and distributed via NASA’s Land Processes Distributed Active Archive Center (LP DAAC). The products have been validated based on one year of ground radiation measurements at 33 Baseline Surface Radiation Network (BSRN) and 25 AmeriFlux stations. The instantaneous DSR has a bias of −15.4 W/m2 and root mean square error (RMSE) of 101.0 W/m2, while the instantaneous PAR has a bias of −0.6 W/m2 and RMSE of 45.7 W/m2. RMSE of daily DSR is 32.3 W/m2, and that of the daily PAR is 13.1 W/m2. The accuracy of the new MODIS daily DSR data is higher than the GLASS product and lower than the CERES product, while the latter incorporates additional geostationary data with better capturing DSR diurnal variability. MCD18 products are currently under reprocessing and the new version (Collection 6.1) will provide improved spatial resolution (1 km) and accuracy.Item Assessing Terrestrial Ecosystem Resilience using Satellite Leaf Area Index(MDPI, 2020-02-11) Wu, Jinhui; Liang, ShunlinQuantitative approaches to measuring and assessing terrestrial ecosystem resilience, which expresses the ability of an ecosystem to recover from disturbances without shifting to an alternative state or losing function and services, is critical and essential to forecasting how terrestrial ecosystems will respond to global change. However, global and continuous terrestrial resilience measurement is fraught with difficulty, and the corresponding attribution of resilience dynamics is lacking in the literature. In this study, we assessed global terrestrial ecosystem resilience based on the long time-series GLASS LAI product and GIMMS AVHRR LAI 3g product, and validated the results using drought and fire events as the main disturbance indicators. We also analyzed the spatial and temporal variations of global terrestrial ecosystem resilience and attributed their dynamics to climate change and environmental factors. The results showed that arid and semiarid areas exhibited low resilience. We found that evergreen broadleaf forest exhibited the highest resilience (mean resilience value (from GLASS LAI): 0.6). On a global scale, the increase of mean annual precipitation had a positive impact on terrestrial resilience enhancement, while we found no consistent relationships between mean annual temperature and terrestrial resilience. For terrestrial resilience dynamics, we observed three dramatic raises of disturbance frequency in 1989, 1995, and 2001, respectively, along with three significant drops in resilience correspondingly. Our study mapped continuous spatiotemporal variation and captured interannual variations in terrestrial ecosystem resilience. This study demonstrates that remote sensing data are effective for monitoring terrestrial resilience for global ecosystem assessment.Item Intercomparison of Machine-Learning Methods for Estimating Surface Shortwave and Photosynthetically Active Radiation(MDPI, 2020-01-23) Brown, Meredith G. L.; Skakun, Sergii; He, Tao; Liang, ShunlinSatellite-derived estimates of downward surface shortwave radiation (SSR) and photosynthetically active radiation (PAR) are a part of the surface radiation budget, an essential climate variable (ECV) required by climate and vegetation models. Ground measurements are insufficient for generating long-term, global measurements of surface radiation, primarily due to spatial limitations; however, remotely sensed Earth observations offer freely available, multi-day, global coverage of radiance that can be used to derive SSR and PAR estimates. Satellite-derived SSR and PAR estimates are generated by computing the radiative transfer inversion of top-of-atmosphere (TOA) measurements, and require ancillary data on the atmospheric condition. To reduce computational costs, often the radiative transfer calculations are done offline and large look-up tables (LUTs) are generated to derive estimates more quickly. Recently studies have begun exploring the use of machine-learning techniques, such as neural networks, to try to improve computational efficiency. Here, nine machine-learning methods were tested to model SSR and PAR using minimal input data from the Moderate Resolution Imaging Spectrometer (MODIS) observations at 1 km spatial resolution. The aim was to reduce the input data requirements to create the most robust model possible. The bootstrap aggregated decision tree (Bagged Tree), Gaussian Process Regression, and Neural Network yielded the best results with minimal training data requirements: an 𝑅2 of 0.77, 0.78, and 0.78 respectively, a bias of 0 ± 6, 0 ± 6, and 0 ± 5 W/m2, and an RMSE of 140 ± 7, 135 ± 8, and 138 ± 7 W/m2, respectively, for all-sky condition total surface shortwave radiation and viewing angles less than 55°. Viewing angles above 55° were excluded because the residual analysis showed exponential error growth above 55°. A simple, robust model for estimating SSR and PAR using machine-learning methods is useful for a variety of climate system studies. Future studies may focus on developing high temporal resolution direct and diffuse estimates of SSR and PAR as most current models estimate only total SSR or PAR.Item Estimation of Land Surface Incident and Net Shortwave Radiation from Visible Infrared Imaging Radiometer Suite (VIIRS) Using an Optimization Method(MDPI, 2020-12-18) Zhang, Yi; Liang, Shunlin; He, Tao; Wang, Dongdong; Yu, YunyueIncident surface shortwave radiation (ISR) is a key parameter in Earth’s surface radiation budget. Many reanalysis and satellite-based ISR products have been developed, but they often have insufficient accuracy and resolution for many applications. In this study, we extended our optimization method developed earlier for the MODIS data with several major improvements for estimating instantaneous and daily ISR and net shortwave radiation (NSR) from Visible Infrared Imaging Radiometer Suite observations (VIIRS), including (1) an integrated framework that combines look-up table and parameter optimization; (2) enabling the calculation of net shortwave radiation (NSR) as well as daily values; and (3) extensive global validation. We validated the estimated ISR values using measurements at seven Surface Radiation Budget Network (SURFRAD) sites and 33 Baseline Surface Radiation Network (BSRN) sites during 2013. The root mean square errors (RMSE) over SURFRAD sites for instantaneous ISR and NSR were 83.76 W/m2 and 66.80 W/m2, respectively. The corresponding daily RMSE values were 27.78 W/m2 and 23.51 W/m2. The RMSE at BSRN sites was 105.87 W/m2 for instantaneous ISR and 32.76 W/m2 for daily ISR. The accuracy is similar to the estimation from MODIS data at SURFRAD sites but the computational efficiency has improved by approximately 50%. We also produced global maps that demonstrate the potential of this algorithms to generate global ISR and NSR products from the VIIRS data.Item Estimating Global Gross Primary Production from Sun-Induced Chlorophyll Fluorescence Data and Auxiliary Information Using Machine Learning Methods(MDPI, 2021-03-04) Bai, Yu; Liang, Shunlin; Yuan, WenpingThe gross primary production (GPP) is important for regulating the global carbon cycle and climate change. Recent studies have shown that sun-induced chlorophyll fluorescence (SIF) is highly advantageous regarding GPP monitoring. However, using SIF to estimate GPP on a global scale is limited by the lack of a stable SIF-GPP relationship. Here, we estimated global monthly GPP at 0.05° spatial resolution for the period 2001–2017, using the global OCO-2-based SIF product (GOSIF) and other auxiliary data. Large amounts of flux tower data are not available to the public and the available data is not evenly distributed globally and has a smaller measured footprint than the GOSIF data. This makes it difficult to use the flux tower GPP directly as an input to the model. Our strategy is to scale in situ measurements using two moderate-resolution satellite GPP products (MODIS and GLASS). Specifically, these two satellite GPP products were calibrated and eventually integrated by in situ measurements (FLUXNET2015 dataset, 83 sites), which was then used to train a machine learning model (GBRT) that performed the best among five evaluated models. The GPP estimates from GOSIF were highly accurate coefficient of determination (R2) = 0.58, root mean square error (RMSE) = 2.74 g C·m−2, bias = –0.34 g C·m−2) as validated by in situ measurements, and exhibited reasonable spatial and seasonal variations on a global scale. Our method requires fewer input variables and has higher computational efficiency than other satellite GPP estimation methods. Satellite-based SIF data provide a unique opportunity for more accurate, near real-time GPP mapping in the future.Item An Effective Method for Generating Spatiotemporally Continuous 30 m Vegetation Products(MDPI, 2021-02-16) Li, Xiuxia; Liang, Shunlin; Jin, HuaanLeaf area index (LAI) and normalized difference vegetation index (NDVI) are key parameters for various applications. However, due to sensor tradeoff and cloud contaminations, these data are often temporally intermittent and spatially discontinuous. To address the discontinuities, this study proposed a method based on spectral matching of 30 m discontinuous values from Landsat data and 500 m temporally continuous values from Moderate-resolution Imaging Spectroradiometer (MODIS) data. Experiments have proven that the proposed method can effectively yield spatiotemporally continuous vegetation products at 30 m spatial resolution. The results for three different study areas with NDVI and LAI showed that the method performs well in restoring the time series, fills in the missing data, and reasonably predicts the images. Remarkably, the proposed method could address the issue when no cloud-free data pairs are available close to the prediction date, because of the temporal information “borrowed” from coarser resolution data. Hence, the proposed method can make better use of partially obscured images. The reconstructed spatiotemporally continuous data have great potential for monitoring vegetation, agriculture, and environmental dynamics.