Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
6 results
Search Results
Item Characterization of Gap-Engineered Josephson Junctions and Gate Fidelities for a Superconducting Qubit(2024) Steffen, Zachary Andrew; Kollár, Alicia; Palmer, Benjamin S; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Quantum computing promises applications in physics, cryptography, material science, pharmaceuticals, and a wide range of other science. Superconducting qubits offer a possible platform for developing a quantum computer. To perform useful quantum computations, the coherence and control of present day superconducting qubits must be greatly improved. In this dissertation, I present two main results to improve the performance of transmon qubits. For the first project, I fabricated and characterized the coherence of transmon devices with asymmetric superconducting gaps. Previous models suggested that devices with asymmetric superconducting gaps on either side of the Josephson junction can be designed to be less subject to loss from quasiparticle tunneling. To gap-engineer the Josephson junctions, I used Ti metal to proximitize and lower the superconducting gap of the Al counter-electrode. Unfortunately, the energy relaxation time constant for an Al/AlOx/Al/Ti 3D transmon I fabricated and tested was T1 = 1 us, over two orders of magnitude shorter than the measured T1 = 134 us of an Al/AlOx/Al 3D transmon with Al capacitor pads and the measured T1 = 143 us of an Al/AlOx/Al 3D transmon with Ta capacitor pads. DC IV measurements of proximitized Josephson junctions showed a reduced superconducting gap, demonstrating that the gap-engineering in the Al/Ti layer was successful. However, these same IV measurements showed greatly increased excess current for voltage biases below the superconducting gap compared to my Al/AlOx/Al junctions. This suggests the addition of Ti caused the junction quality to worsen, potentially being a source of tunneling loss in the transmon devices. Intentionally adding oxygen disorder between the Al and Ti layers reduced the proximity effect and subgap current in DC measurements while increasing the relaxation time of a 3D transmon to T1 = 32 us. Additionally, I designed an Al/AlOx/Al SQUID device to perform DC IV measurements of junctions with tunable total critical current. In a single junction, subgap tunneling features can be due to the critical current interacting with the environment, subgap quasiparticle processes, or other sources. Reducing the critical current allows these features to be differentiated and more accurately measure the effects from quasiparticle tunneling alone. Characterizing this device showed subgap tunneling features consistent with inelastic Cooper pair tunneling and quasiparticle transport via multiple Andreev reflection in a low transparency junction. This measurement technique could be used to further study gap-engineered junctions. For the second project, I characterized an Al/AlOx/Al 2D transmon device with Ta features and performed high-fidelity single qubit gates. First, I used error amplifying pulse sequences to fine-tune the qubit gate pulses. I evaluated the gate error with randomized benchmarking. I characterized gates with Gaussian and cosine shaped pulses at a variety of pulse lengths. Analyzing the pulse envelopes in the frequency domain and directly measuring leakage to the transmon's second excited state revealed that leakage from driving higher qubit transitions was a major source of gate error. Next, I characterized gates using a pulse shape designed by a physics informed neural network designed by Güngördü and Kestner and found improved gate error for 16~ns pulses achieving an average error per gate of (3.36 +/- 0.03) x 10^-4. This outperformed errors of (5.54 +/- 0.24) x10^-4 for a cosine shaped pulse and (3.93 +/- 0.12) x10^-4 for a Gaussian shaped pulse of the same length. Further optimization of the pulse using predistortion or leakage reduction strategies may yield even greater performance.Item Tight-binding simulations of random alloy and strong spin-orbit effects in InAs/GaBiAs quantum dot molecules(2023) Lin, Arthur; Bryant, Garnett W; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Self-assembled \ce{InAs} quantum dots (QDs), which have long hole-spin coherence times and are amenable to optical control schemes, have long been explored as building blocks for qubit architectures. One such design consists of vertically stacking two QDs to create a quantum dot molecule (QDM). The two dots can be resonantly tuned to form "molecule-like" coupled hole states with the hybridization of hole states otherwise localized in each respective dot. Furthermore, spin-mixing of the hybridized states in dots offset along their stacking direction enables qubit rotation to be driven optically, allowing for an all-optical qubit control scheme. Increasing the magnitude of this spin-mixing is important for optical quantum control protocols. We introduce the incorporation of dilute \ce{GaBi_xAs_{1-x}} alloys in the barrier region between the two dots, as \ce{GaBiAs} is expected to provide an increase in spin-mixing of the molecular states over \ce{GaAs}. Using an atomistic tight-binding model, we compute the properties of \ce{GaBi_xAs_{1-x}} and the modification of hole states that arise when the alloy is used in the barrier of an \ce{InAs} QDM. We show that an atomistic treatment is necessary to correctly capture non-traditional alloy effects of \ce{GaBiAs}. Additionally, an atomistic model allows for the study of configurational variances and clustering effects of the alloy. We find that in \ce{InAs} QDMs with a \ce{GaBiAs} inter-dot barrier, hole states are well confined to the dots up to an alloy concentration of 7\%. By independently studying the alloy-induced strain and electronic scattering off \ce{Bi} and As orbitals, we conclude that an initial increase in QDM hole state energy at low Bi concentration is caused by the alloy-induced strain. Additionally, a comparison between the fully alloyed barrier and a partially alloyed barrier shows that fully alloying the barrier applies an asymmetric strain between the top and bottom dot. By lowering the energetic barrier between the two dots, \ce{GaBiAs} is able to promote the tunnel coupling of hole states in QDMs. We obtain a three fold increase of hole tunnel coupling strength in the presence of a 7\% alloy. Additionally, we show how an asymmetric strain between the two dots caused by the alloy results in a shift in the field strength needed to bring the dots to resonance. We explore different geometries of QDMs to optimize the tunnel coupling enhancement the alloy can provide, as well as present evidence that the change in tunnel coupling may affect the heavy-hole and light-hole components of the ground state in a QDM. The strong spin-orbit coupling strength of \ce{GaBiAs} allows for the enhancement of spin-mixing in QDMs. A strong magnetic field can be applied directly in the TB Hamiltonian. In order to fit the TB results to a simple phenomenological Hamiltonian, we found it necessary to include second order magnetic field terms in the phenomenological Hamiltonian as a diamagnetic correction to the hole state energies. Fitting to the corrected phenomenological model, we obtain a three-fold enhancement for the spin-mixing strength of offset dots at 7\% \ce{Bi}. Additionally, at higher alloy concentrations, a combination of enhanced spin-mixing and increase resonance change in g-factor results in intra-dot spin-mixing between Zeeman split states of the lower energy dot. A perturbative analysis of the magnetic field shows that both the spin-mixing and resonance g-factor change are effects of the Peierls contribution, or the component of the magnetic field applied to the effective spatial angular momentum of the wavefunction. When spin-orbit coupling is removed from the system, there is no longer a preferred alignment between the spin of the system and the Peierls effective angular momentum, thus removing any magnetic field effects of the Peierls contribution. The analysis of spin-orbit effects can be extended to single dots with in-plane magnetic and electric fields. This thesis concludes with some preliminary results utilizing electric fields, in conjunction with spin-locking effects provided by spin-orbit coupling, to manipulate the spin polarization in single dots. TB calculations with a magnetic field are performed to show the preferred alignment of the effective angular momentum, given by the geometry of the dot, also spatially locks the spin-polarization of hole states. An electric field can then be applied to bias the charge density to either side of the dot, using the spatial texture of the spin to obtain a spin polarized in $z$ while both the magnetic and electric field is in the $xy$-plane. The same perturbative analysis with the QDMs can be applied to show sufficient spin-orbit coupling is needed to generate such an effect. We propose the utilization of spin texture and electric fields as a novel method for rotating the spin in QDs.Item Quantum impurity regime of circuit quantum electrodynamics(2022) Mehta, Nitish Jitendrakumar; Manucharyan, Vladimir E; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this thesis we describe a novel regime of cavity quantum electrodynamics, where a single atom is coupled to a multi-mode Fabry-Perot cavity with a strength much larger than its free spectral range. In this regime, the atom acting as a quantum impurity mediates interactions between many-body states of radiation in the multi-mode cavity. This novel regime of cavity QED is experimentally realized by coupling superconducting artificial atoms to a high impedance 1-D superconducting transmission line cavity. We study the problem of single photon decay in these strongly non-linear cavities with discrete energy levels. By engineering the properties of the artificial atoms, we alter interaction and connectivity between many-body states of radiation, and we observe two distinct effects. For the case of a multi-mode Fabry-Perot coupled to a fluxonium artificial atom, the interactions mediated by the atom attempts to down convert a single photon into many low frequency photons but fails because of limited connectivity in the many-body Fock space. This phenomenon of many-body localization of radiation gives rise to striking spectral features where a single standing wave resonance of the cavity is replaced by a fine structure of satellite peaks. On the other hand, for the case of a transmon coupled galvanically to the cavity, the interaction splits a single photon at high energy into a shower of odd number of lower energy photons. In this case the single standing wave resonance of the cavity acquires a shorter lifetime which can be calculated using Fermi's golden rule and matches our theoretical model without any adjustable parameters.Item Mixed-Species Ion Chains for Quantum Networks(2020) Sosnova, Ksenia; Monroe, Christopher; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Quantum computing promises solutions to some of the world's most important problems that classical computers have failed to address. The trapped-ion-based quantum computing platform has a lot of advantages for doing so: ions are perfectly identical and near-perfectly isolated, feature long coherent times, and allow high-fidelity individual laser-controlled operations. One of the greatest remaining obstacles in trapped-ion-based quantum computing is the issue of scalability. The approach that we take to address this issue is a modular architecture: separate ion traps, each with a manageable number of ions, are interconnected via photonic links. To avoid photon-generated crosstalk between qubits and utilize advantages of different kinds of ions for each role, we use two distinct species - ¹⁷¹Yb⁺ as memory qubits and ¹³⁸Ba⁺ as communication qubits. The qubits based on ¹⁷¹Yb⁺ are defined within the hyperfine "clock" states characterized by a very long coherence time while ¹³⁸Ba⁺ ions feature visible-range wavelength emission lines. Current optical and fiber technologies are more efficient in this range than at shorter wavelengths. We present a theoretical description and experimental demonstration of the key elements of a quantum network based on the mixed-species paradigm. The first one is entanglement between an atomic qubit and the polarization degree of freedom of a pure single photon. We observe a value of the second-order correlation function g⁽²⁾(0) = (8.1 ± 2.3)⨉10⁻⁵ without background subtraction, which is consistent with the lowest reported value in any system. Next, we show mixed-species entangling gates with two ions using the Mølmer-Sørensen and Cirac-Zoller protocols. Finally, we theoretically generalize mixed-species entangling gates to long ion chains and characterize the roles of normal modes there. In addition, we explore sympathetic cooling efficiency in such mixed-species crystals. Besides these developments, we demonstrate new techniques for manipulating states within the D₃⸝₂-manifold of zero-nuclear-spin ions - a part of a protected qubit scheme promising seconds-long coherence times proposed by Aharon et al. in 2013. As a next step, we provide a detailed description of the protocols for three- and four-node networks with mixed species, along with a novel design for the third trap with in-vacuum optics to optimize light collection.Item Building and Programming a Universal Ion Trap Quantum Computer(2018) Figgatt, Caroline; Monroe, Christopher; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Quantum computing represents an exciting frontier in the realm of information processing; it is a promising technology that may provide future advances in a wide range of fields, from quantum chemistry to optimization problems. This thesis discusses experimental results for several quantum algorithms performed on a programmable quantum computer consisting of a linear chain of five or seven trapped 171Yb+ atomic clock ions with long coherence times and high gate fidelities. We execute modular one- and two-qubit computation gates through Raman transitions driven by a beat note between counter-propagating beams from a pulsed laser. The system's individual addressing capability provides arbitrary single-qubit rotations as well as all possible two-qubit entangling gates, which are implemented using a pulse-segmentation scheme. The quantum computer can be programmed from a high-level interface to execute arbitrary quantum circuits, and comes with a toolbox of many important composite gates and quantum subroutines. We present experimental results for a complete three-qubit Grover quantum search algorithm, a hallmark application of a quantum computer with a well-known speedup over classical searches of an unsorted database, and report better-than-classical performance. The algorithm is performed for all 8 possible single-result oracles and all 28 possible two-result oracles. All quantum solutions are shown to outperform their classical counterparts. Performing parallel operations will be a powerful capability as deeper circuits on larger, more complex quantum computers present new challenges. Here, we perform a pair of 2-qubit gates simultaneously in a single chain of trapped ions. We employ a pre-calculated pulse shaping scheme that modulates the phase and amplitude of the Raman transitions to drive programmable high-fidelity 2-qubit entangling gates in parallel by coupling to the collective modes of motion of the ion chain. Ensuring the operation yields only spin-spin interactions between the desired pairs, with neither residual spin-motion entanglement nor crosstalk spin-spin entanglement, is a nonlinear constraint problem, and pulse solutions are found using optimization techniques. As an application, we demonstrate the quantum full adder using a depth-4 circuit requiring the use of parallel 2-qubit operations.Item CAVITY QUANTUM ELECTRODYNAMICS OF NANOSCALE TWO-LEVEL SYSTEMS(2014) Sarabi, Bahman; Wellstood, Frederick C; Osborn, Kevin D; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this dissertation, I introduce a novel method for measuring individual nanoscale two-level systems (TLSs) in amorphous solids based on strong direct coupling between a TLS and a cavity. I describe power- and temperature-dependent analysis of individual TLSs using a theoretical model based on cavity quantum electrodynamics (CQED). This method allows for measuring individual TLSs in different insulators and over a wide range of film thicknesses. For a silicon nitride film at 25 mK and a lumped-element cavity resonance at 6.9 GHz, I find TLSs with coherence times on the order of microseconds which can potentially be used as coherent resources. Furthermore, I introduce a device which enables spectroscopy of TLSs in insulating films by DC-tuning the TLSs. I present measurement results on 60 TLSs accompanied by theoretical analysis and extraction of distribution statistics of the TLS parameters. I find evidence for at least two TLS dipole sizes. I also investigate the role of RF-induced DC bias voltage on the growth of titanium nitride films on silicon (100) substrates deposited by DC magnetron reactive sputtering. I present hybrid designs of TiN coplanar resonators which were fabricated with an aluminum transmission line to avoid impedance mismatches due to large kinetic inductance of TiN films. I observe remarkably large kinetic inductance at certain substrate DC bias voltages. Finally, I describe several trilayer resonators designed to measure TLS ensembles within atomic layer deposition (ALD) grown aluminum oxide. Each resonator is unique in trilayer capacitor perimeter and hence the alumina air-exposed cross section. I compare the measured loss tangents of the resonators and investigate the effect of the capacitor perimeter on TLS defect density at different temperatures.