Physics

Permanent URI for this communityhttp://hdl.handle.net/1903/2269

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Investigating and accounting for physics graduate students' tutorial classroom practice
    (2010) Goertzen, Renee Michelle; Scherr, Rachel E; Redish, Edward F; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Physics Education researchers have been working to understanding how students learn physics, which has led to the creation of a body of research-based curricula. It is equally important to study novice instructors, graduate teaching assistants (TAs), who often teach these students. The study of TAs has similarities to how students have been studied: it is important to identify what preconceptions they often enter the classroom with, what resources they may have that they could apply to their physics teaching, and how both the classroom environment and past experiences affect what they are doing in the classroom. Although TAs are responsible for a significant portion of students' instruction at many universities, science TAs and their teaching have not been the focus of any significant amount of study. This dissertation begins to fill this gap by examining physics graduate students who teach discussion sections for introductory courses using tutorials, which are guided worksheets completed by groups of students. While assisting students with their conceptual understanding of physics, TAs are also expected to convey classroom norms of constructing arguments and listening and responding to the reasoning of others. Physics graduate students enter into the role of tutorial TA having relative content expertise but minimal or no pedagogical expertise. This analysis contends that considering the broader influences on TAs can account for TA behavior. Observations from two institutions (University of Colorado, Boulder and University of Maryland, College Park) show that TAs have different valuations (or buy-in) of the tutorials they teach, which have specific, identifiable consequences in the classroom. These differences can be explained by differences in the TAs' different teaching environments. Next, I examine cases of a behavior shared by three TAs, in which they focus on relatively superficial indicators of knowledge. Because the beliefs that underlie their teaching decisions vary, I argue that understanding and addressing the TAs individual beliefs will lead to more effective professional development. Lastly, this analysis advocates a new perspective on TA professional development: one in which TAs' ideas about teaching are taken to be interesting, plausible, and potentially productive.
  • Thumbnail Image
    Item
    COMPARING AND CONTRASTING DIFFERENT METHODS FOR PROBING STUDENT EPISTEMOLOGY AND EPISTEMOLOGICAL DEVELOPMENT IN INTRODUCTORY PHYSICS
    (2009) McCaskey, Timothy Lee; Redish, Edward F; Elby, Andrew R; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this dissertation, I perform and compare three different studies of introductory physics students' epistemological views - their views about the nature of knowledge and how it is learned. Physics education research (PER) shows that epistemological views affect how students learn, so they are important to understand and diagnose. The first study uses a Likert-scale instrument, adapted from the Maryland Physics Expectation Survey, designed to assess to what extent students see physics knowledge as coherent (rather than piecemeal), conceptual (rather than just formulas), and constructed (rather than absorbed). Using this survey, I documented several results, including that (i) a large lecture class can produce favorable changes in students' epistemological views, at least in the context of the class, and (ii) teaching a rushed modern physics unit at the end of an introductory sequence can lead to negative epistemological effects. The second study uses the Force Concept Inventory with modified instructions: students indicated both the answer they think a scientist would give and the answer that makes the most sense to them personally. A "split" between these two answers shows that the student does not think she has reconciled her common sense with the formal physics concepts. This study showed that attention to reconciliation in a course allows students to see initially-counterintuitive ideas as making sense. Finally, I did a detailed study of one student by (i) watching video of her in tutorial, where she and three other students answered a structured series of conceptual and quantitative physics questions, (ii) formulating interviews based largely on what I observed in the video, and (iii) interviewing her while the tutorial was still fresh in her head. I repeated this cycle every week for a semester. I found that her tendency to focus on the multiple and ambiguous meanings of words like "force" hampered her ability to reconcile physics concepts with common sense. This last method is time-consuming, but it produces rich data and allows for a fine-grained analysis of individual students. The first two survey methods are best suited for measuring the effect of epistemologically-centered course reforms on large groups of students.
  • Thumbnail Image
    Item
    The Dynamics of Variability in Introductory Physics Students' Thinking: Examples from Kinematics
    (2009) Frank, Brian Wallace; Scherr, Rachel E; Hammer, David; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Physics education research has long emphasized the need for physics instruction to address students' existing intuitions about the physical world as an integral part of learning physics. Researchers, however, have not reached a consensus-view concerning the nature of this intuitive knowledge or the specific role that it does (or might) play in physics learning. While many early characterizations of student misconceptions cast students' intuitive thinking as largely static, unitary in structure, and counter-productive for the purpose of learning correct physics, much of contemporary research supports a conceptualization of intuitive thought as dynamic, manifold in structure, and generative in the development of expertise. This dissertation contributes to ongoing inquiry into the nature of students' intuitive thought and its role in learning physics through the pursuit of dynamic systems characterizations of student reasoning, with a particular focus on how students settle into and shift among multiple patterns of reasoning about motion. In one thread of this research, simple experimental designs are used to demonstrate how individual students can be predictably biased toward and away from different ways of thinking about the same physical situation when specific parameters of questions posed to students are varied. I qualitatively model students' thinking in terms of the activations and interactions among fine-grained intuitive knowledge and static features of the context. In a second thread of this research, case studies of more dynamic shifts in students' conceptual reasoning are developed from videos of student discussions during collaborative classroom activities. These show multiple local stabilities of students' thinking as well, with evidence of group-level dynamics shifting on the time scale of minutes. This work contributes to existing research paradigms that aim to characterize student thinking in physics education in two important ways: (1) through the use of methods that allow for forms of empirical accountability that connect descriptive models of student thinking to experimental data, and (2) through the theoretical development of explanatory mechanisms that account for patterns in students' reasoning at multiple levels of analysis.
  • Thumbnail Image
    Item
    A Framework for Recognizing Mechanistic Reasoning in Student Scientific Inquiry
    (2006-11-26) Russ, Rosemary Stallings; Hammer, David; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A central ambition of science education reform is to help students develop abilities for scientific inquiry. Education research is thus rightly focused on defining what constitutes "inquiry" and developing tools for assessing it. There has been progress with respect to particular aspects of inquiry, namely student abilities for controlled experimentation and scientific argumentation. However, we suggest that in addition to these frameworks for assessing the structure of inquiry we need frameworks for analyzing the substance of that inquiry. In this work we draw attention to and evaluate the substance of student mechanistic reasoning. Both within the history and philosophy of science and within science education research, scientific inquiry is characterized in part as understanding the causal mechanisms that underlie natural phenomena. The challenge for science education, however, is that there has not been the same progress with respect to making explicit what constitutes mechanistic reasoning as there has been in making explicit other aspects of inquiry. This dissertation attempts to address this challenge. We adapt an account of mechanism in professional research science to develop a framework for reliably recognizing mechanistic reasoning in student discourse. The coding scheme articulates seven specific aspects of mechanistic reasoning and can be used to systematically analyze narrative data for patterns in student thinking. It provides a tool for detecting quality reasoning that may be overlooked by more traditional assessments. We apply the mechanism coding scheme to video and written data from a range of student inquiries, from large group discussions among first grade students to the individual problem solving of graduate students. While the primary result of this work is the coding scheme itself and the finding that it provides a reliable means of analyzing transcript data for evidence of mechanistic thinking, the rich descriptions we develop in each case study help us recognize continuity between graduate level learning and elementary school science: part of what students are able to do in elementary school finds its way to graduate school. Thus this work makes it possible for researchers, curriculum developers, and teachers to systematically pursue mechanistic reasoning as an objective for inquiry.
  • Thumbnail Image
    Item
    A Study of Social Interaction and Teamwork in Reformed Physics Laboratories
    (2006-02-21) Gresser, Paul William; Redish, Edward F.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    It is widely accepted that, for many students, learning can be accomplished most effectively through social interaction with peers, and there have been many successes in using the group environment to improve learning in a variety of classroom settings. What is not well understood, however, are the dynamics of student groups, specifically how the students collectively apprehend the subject matter and share the mental workload. This research examines recent developments of theoretical tools for describing the cognitive states of individual students: associational patterns such as epistemic games and cultural structures such as epistemological framing. Observing small group interaction in authentic classroom situations (labs, tutorials, problem solving) suggests that these tools could be effective in describing these interactions. Though conventional wisdom tells us that groups may succeed where individuals fail, there are many reasons why group work may also run into difficulties, such as a lack or imbalance of knowledge, an inappropriate mix of learning styles, or a destructive power arrangement. This research explores whether or not inconsistent epistemological framing among group members can also be a cause of group failure. Case studies of group interaction in the laboratory reveal evidence of successful groups employing common framing, and unsuccessful groups failing from lack of a shared frame. This study was conducted in a large introductory algebra-based physics course at the University of Maryland, College Park, in a laboratory designed specifically to foster increased student interaction and cooperation. Videotape studies of this environment reveal that productive lab groups coordinate their efforts through a number of locally coherent knowledge-building activities, which are described through the framework of epistemic games. The existence of these epistemic games makes it possible for many students to participate in cognitive activities without a complete shared understanding of the specific activity's goal. Also examined is the role that social interaction plays in initiating, negotiating, and carrying out these epistemic games. This behavior is illustrated through the model of distributed cognition. An attempt is made to analyze this group activity using Tuckman's stage model, which is a prominent description of group development within educational psychology. However, the shortcomings of this model in dealing with specific cognitive tasks lead us to seek another explanation. The model used in this research seeks to expand existing cognitive tools into the realm of social interaction. In doing so, we can see that successful groups approach tasks in the lab by negotiating a shared frame of understanding. Using the findings from these case studies, recommendations are made concerning the teaching of introductory physics laboratory courses.
  • Thumbnail Image
    Item
    Analogies as Categorization Phenomena: Studies from Scientific Discourse
    (2004-11-30) Atkins, Leslie Jill; Hammer, David; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Studies on the role of analogies in science classrooms have tended to focus on analogies that come from the teacher or curriculum, and not the analogies that students generate. Such studies are derivative of an educational system that values content knowledge over scientific creativity, and derivative of a model of teaching in which the teacher's role is to convey content knowledge. This dissertation begins with the contention that science classrooms should encourage scientific thinking and one role of the teacher is to model that behavior and identify and encourage it in her students. One element of scientific thinking is analogy. This dissertation focuses on student-generated analogies in science, and offers a model for understanding these. I provide evidence that generated analogies are assertions of categorization, and the base of an analogy is the constructed prototype of an ad hoc category. Drawing from research on categorization, I argue that generated analogies are based in schemas and cognitive models. This model allows for a clear distinction between analogy and literal similarity; prior to this research analogy has been considered to exist on a spectrum of similarity, differing from literal similarity to the degree that structural relations hold but features do not. I argue for a definition in which generated analogies are an assertion of an unexpected categorization: that is, they are asserted as contradictions to an expected schema.