Physics

Permanent URI for this communityhttp://hdl.handle.net/1903/2269

Browse

Search Results

Now showing 1 - 10 of 16
  • Thumbnail Image
    Item
    Cross-Section Measurement of Charged-Pion Photoproduction from Hydrogen and Deuterium
    (American Physical Society, 2003-06-11) Zhu, L.Y.; Arrington, J.; Averett, T.; Beise, E.; Calarco, J.; Chang, T.; Chen, J.P.; Chudakov, E.; Coman, M.; Clasie, B.; Crawford, C.; Dieterich, S.; Dohrmann, F.; Dutta, D.; Fissum, K.; Frullani, S.; Gao, H.; Gilman, R.; Glashausser, C.; Gomez, J.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D.W.; Holt, R.J.; de Jager, C.W.; Jiang, X.; Kinney, E.; Kramer, K.; Kumbartzki, G.; LeRose, J.; Liyanage, N.; Mack, D.; Markowitz, P.; McCormick, K.; Meekins, D.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Nanda, S.; Potterveld, D.; Ransome, R.; Reimer, P.E.; Reitz, B.; Saha, A.; Schulte, E.C.; Seely, J.; Sirca, S.; Strauch, S.; Sulkosky, V.; Vlahovic, B.; Weinstein, L.B.; Wijesooriya, K.; Williamson, C.F.; Wojtsekhowski, B.; Xiang, H.; Xiong, F.; Xu, W.; Zeng, J.; Zheng, X.; Jefferson Lab Hall A Colloboration
    We have measured the differential cross section for the γn→π-p and γp→π+n reactions at θc.m.=90° in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at Eγ≳3.3   GeV exhibit a global scaling behavior for both π- and π+ photoproduction, consistent with the constituent counting rule and the existing π+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data. The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive π- to π+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams.
  • Thumbnail Image
    Item
    Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer
    (American Physical Society, 2000-05-29) Abbott, D.; Ahmidouch, A.; Anklin, H.; Arvieux, J.; Ball, J.; Beedoe, S.; Beise, E.J.; Bimbot, L.; Boeglin, W.; Breuer, H.; Brindza, P.; Carlini, R.; Chant, N.S.; Danagoulian, S.; Dow, K.; Ducret, J.-E.; Dunne, J.; Ewell, L.; Eyraud, L.; Furget, C.; Garcon, M.; Gilman, R.; Glashausser, C.; Gueye, P.; Gustafsson, K.; Hafidi, K.; Honegger, A.; Jourdan, J.; Kox, S.; Kumbartzki, G.; Lu, L.; Mack, D.; Markowitz, P.; McIntyre, J.; Meekins, D.; Merchez, F.; Mitchell, J.; Mohring, R.; Mtingwa, S.; Mrktchyan, H.; Pitz, D.; Qin, L.; Ransome, R.D.; Real, J.-S.; Roos, P.G.; Rutt, P.; Sawafta, R.; Stepanyan, S.; Tieulent, R.; Tomasi-Gustafsson, E.; Turchinetz, W.; Vansyoc, K.; Volmer, J.; Voutier, E.; Vulcan, W.; Williamson, C.; Wood, S.A.; Yan, C.; Zhao, J.; Zhao, W.; Lung, A.; Jefferson Lab t20 Collaboration
    Tensor polarization observables ( t20, t21, and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7(GeV/c)2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron High Momentum Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q2 the deuteron charge form factors GC and GQ. They are in good agreement with relativistic calculations and disagree with perturbative QCD predictions.
  • Thumbnail Image
    Item
    Precise Measurement of the Deuteron Elastic Structure Function A(Q2)
    (American Physical Society, 1999-02-15) Abbott, D.; Ahmidouch, A.; Anklin, H.; Arvieux, J.; Ball, J.; Beedoe, S.; Beise, E.J.; Bimbot, L.; Boeglin, W.; Breuer, H.; Carlini, R.; Chant, N.S.; Danagoulian, S.; Dow, K.; Ducret, J.-E.; Dunne, J.; Ent, R.; Ewell, L.; Eyraud, L.; Furget, C.; Garcon, M.; Gilman, R.; Glashausser, C.; Gueye, P.; Gustafsson, K.; Hafidi, K.; Honegger, A.; Jourdan, J.; Kox, S.; Kumbartzki, G.; Lu, L.; Lung, A.; Mack, D.; Markowitz, P.; McIntyre, J.; Meekins, D.; Merchez, F.; Mitchell, J.; Mohring, R.; Mtingwa, S.; Mrktchyan, H.; Pitz, D.; Qin, L.; Ransome, R.; Real, J.-S.; Roos, P.G.; Rutt, P.; Sawafta, R.; Stepanyan, S.; Tieulent, R.; Tomasi-Gustafsson, E.; Turchinetz, W.; Vansyoc, K.; Volmer, J.; Voutier, E.; Vulcan, W.; Williamson, C.; Wood, S.A.; Yan, C.; Zhao, J.; Zhao, W.; The Jefferson Lab t20 Collaboration
    The A(Q2) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q2 between 0.66 and 1.80(GeV/c)2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5°. These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents.
  • Thumbnail Image
    Item
    Longitudinal and Transverse Cross Sections in the 1H(e,e′K+)Λ Reaction
    (American Physical Society, 1998-08-31) Niculsescu, G.; Mohring, R.M.; Gueye, P.; Abbott, D.; Ahmidouch, A.; Amatuni, Ts.A.; Ambrozewicz, P.; Angelescu, T.; Armstrong, C.S.; Assamagan, K.; Avery, S.; Bailey, K.; Baker, O.K.; Beard, K.; Beedoe, S.; Beise, E.; Breuer, H.; Carlini, R.; Cha, J.; Chang, C.C.; Chant, N.; Cisbani, E.; Collins, G.; Cummings, W.; Danagoulian, S.; DeLeo, R.; Duncan, F.; Dunne, J.; Dutta, D.; Eden, T.; Ent, R.; Eyraud, L.; Ewell, L.; Finn, M.; Fortune, T.; Frolov, V.; Frullani, S.; Furget, C.; Garibaldi, F.; Gaskell, D.; Geesaman, D.F.; Gustafsson, K.K.; Hansen, J.-O.; Harvey, M.; Hinton, W.; Hungerford, E.; Iodice, M.; Jackson, C.; Keppel, C.; Kim, W.; Kino, K.; Koltenuk, D.; Kox, S.; Kramer, L.; Leone, T.; Lolos, G.; Lung, A.; Mack, D.; Madey, R.; Maeda, M.; Majewski, S.; Markowitz, P.; Martoff, C.J.; Meekins, D.; Mihul, A.; Mitchell, J.; Mkrtchyan, H.; Mtingwa, S.; Niculescu, I.; Perrino, R.; Potterveld, D.; Price, J.W.; Raue, B.A.; Real, J.-S.; Reinhold, J.; Roos, P.; Saito, T.; Savage, G.; Sawafta, R.; Segel, R.; Stepanyan, S.; Stoler, P.; Tadevosian, V.; Tang, L.; Teodorescu, L.; Terasawa, T.; Tsubota, H.; Urciuoli, G.M.; Volmer, J.; Vulcan, W.; Welch, P.; Williams, R.; Wood, S.; Yan, C.; Zeidman, B.
    The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.
  • Thumbnail Image
    Item
    Quasifree (e,e′p) Reactions and Proton Propagation in Nuclei
    (American Physical Society, 1998-06-08) Abbott, D.; Ahmidouch, A.; Amatuni, Ts. A.; Armstrong, C.; Arrington, J.; Assamagan, K.A.; Bailey, K.; Baker, O.K.; Barrow, S.; Beard, K.; Beatty, D.; Beedoe, S.; Beise, E.; Belz, E.; Bochna, C.; Breuer, H.; Bruins, E.E.W.; Carlini, R.; Cha, J.; Chant, N.; Cothran, C.; Cummings, W.J.; Danagoulian, S.; Day, D.; DeSchepper, D.; Ducret, J.-E.; Duncan, F.; Dunne, J.; Dutta, D.; Eden, T.; Ent, R.; Fortune, H.T.; Frolov, V.; Geesaman, D.F.; Gao, H.; Gilman, R.; Gueye, P.; Hansen, J.O.; Hinton, W.; Holt, R.J.; Jackson, C.; Jackson, H.E.; Jones, C.E.; Kaufman, S.; Kelly, J.J.; Keppel, C.; Khandaker, M.; Kim, W.; Kinney, E.; Klein, A.; Koltenuk, D.; Kramer, L.; Lorenzon, W.; McFarlane, K.; Mack, D.J.; Madey, R.; Markowitz, P.; Martin, J.; Mateos, A.; Meekins, D.; Miller, M.A.; Milner, R.; Mitchell, J.; Mohring, R.; Mkrtchyan, H.; Nathan, A.M.; Niculescu, G.; Niculescu, I.; O'Neill, T.G.; Potterveld, D.; Price, J.W.; Reinhold, J.; Salgado, C.; Schiffer, J.O.; Segel, R.E.; Stoler, P.; Suleiman, R.; Tadevosyan, V.; Tang, L.; Terburg, B.; van Westrum, D.; Welch, P.; Williamson, C.; Wood, S.; Yan, C.; Yang, Jae-Choon; Yu, J.; Zeidman, B.; Zhao, W.; Zihlmann, B.
    The ( e,e′p) reaction was studied on targets of C, Fe, and Au at momentum transfers squared Q2 of 0.6, 1.3, 1.8, and 3.3 GeV2 in a region of kinematics dominated by quasifree electron-proton scattering. Missing energy and missing momentum distributions are reasonably well described by plane wave impulse approximation calculations with Q2 and A dependent corrections that measure the attenuation of the final state protons.
  • Thumbnail Image
    Item
    Determination of the Pion Charge Form Factor at Q2=1.60 and 2.45  (GeV/c)2
    (American Physical Society, 2006-11-10) Horn, D.T.; Aniol, K.; Arrington, J.; Barret, B.; Beise, E.J.; Blok, H.P.; Boeglin, W.; Brash, E.J.; Breuer, H.; Chang, C.C.; Christy, M.E.; Ent, R.; Gaskell, D.; Gibson, E.; Holt, R.J.; Huber, G.M.; Jin, S.; Jones, M.K.; Keppel, C.E.; Kim, W.; King, P.M.; Kovaltchouk, V.; Liu, J.; Lolos, G.J.; Mack, D.J.; Margaziotis, D.J.; Markowitz, P.; Matsumura, A.; Meekins, D.; Miyoshi, T.; Mkrtchyan, H.; Niculescu, I.; Okayasu, Y.; Pentchev, L.; Perdrisat, C.; Potterveld, D.; Punjabi, V.; Reimer, P.; Reinhold, J.; Roche, J.; Roos, P.G.; Sarty, A.; Smith, G.R.; Tadevosyan, V.; Tang, L.G.; Tvaskis, V.; Vidakovic, S.; Volmer, J.; Vulcan, W.; Warren, G.; Wood, S.A.; Xu, C.; X. Zheng, X.; Jefferson Lab F_{π} Collaboration
    The 1H(e,e′π+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45  GeV2 at an invariant mass of the photon nucleon system of W=2.22  GeV. The charged pion form factor (Fπ) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which Fπ is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative quantum chromodynamics prediction.
  • Thumbnail Image
    Item
    Recoil Polarization for Δ Excitation in Pion Electroproduction
    (American Physical Society, 2005-09-02) Kelly, J.J.; Roche, R.E.; Chai, Z.; Jones, M.K.; Gayou, O.; Sarty, A.J.; Frullani, S.; Aniol, K.; Beise, E.J.; Benmokhtar, F.; Bertozzi, W.; Boeglin, W.U.; Botto, T.; Brash, E.J.; Breuer, H.; Brown, E.; Burtin, E.; Calarco, J.R.; Cavata, C.; Chang, C.C.; Chant, N.S.; Chen, J.-P.; Coman, M.; Crovelli, D.; De Leo, R.; Dieterich, S.; Escoffier, S.; Fissum, K.G.; Garde, V.; Garibaldi, F.; Georgakopoulus, S.; Gilad, S.; Gilman, R.; Glashausser, C.; Hansen, J.-O.; Higinbotham, D.W.; Hotta, A.; Huber, G.M.; Ibrahim, H.; Iodice, M.; de Jager, C.W.; Jiang, X.; Klimenko, A.; Kozlov, A.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissiere, G.; LeRose, J.J.; Lindgren, R.A.; Liyanage, N.; Lolos, G.J.; Lourie, R.W.; Margaziotis, D.J.; Marie, F.; Markowitz, P.; McAleer, S.; Meekins, D.; Michaels, R.; Milbrath, B.D.; Mitchell, J.; Nappa, J.; Neyret, D.; Perdrisat, C.F.; Potokar, M.; Punjabi, V.A.; Pussieux, T.; Ransome, R.D.; Roos, P.G.; Rvachev, M.; Saha, A.; Sirca, S.; Suleiman, R.; Strauch, S.; Templon, J.A.; Todor, L.; Ulmer, P.E.; Urciuoli, G.M.; Weinstein, L.B.; Wijesooriya, K.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.; Jefferson Laboratory E91011 and Hall A Collaborations
    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23  GeV at Q2=1.0  (GeV/c)2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re (S1+/M1+)=-(6.84±0.15)% and Re (E1+/M1+)=-(2.91±0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and ℓπ≤1 truncation.
  • Thumbnail Image
    Item
    Charged pion form factor between Q2=0.60 and 2.45 GeV2. II. Determination of, and results for, the pion form factor
    (2008-10) Huber, G.M.; Blok, H.P.; Horn, T.; Beise, E.J.; Gaskell, D.; Mack, D.J.; Tadevosyan, V.; Volmer, J.; Abbott, D.; Aniol, K.; Anklin, H.; Armstrong, C.; Arrington, J.; Assamagan, K.; Avery, S.; Baker, O.K.; Barrett, B.; Bochna, C.; Boeglin, W.; Brash, E.J.; Breuer, H.; Chang, C.C.; Chant, N.; Christy, M.E.; Dunne, J.; Eden, T.; Ent, R.; Fenker, H.; Gibson, E.F.; Gilman, R.; Gustafsson, K.; Hinton, W.; Holt, J.; Jackson, H.; Jin, S.; Jones, M.K.; Keppel, C.E.; Kim, P.H.; Kim, W.; King, P.M.; Klein, A.; Koltenuk, D.; Kovaltchouk, V.; Liang, M.; Liu, J.; Lolos, G.J.; Lung, A.; Margaziotis, D.J.; Markowitz, P.; Matsumura, A.; McKee, D.; Meekins, D.; Mitchell, J.; Miyoshi, T.; Mkrtchyan, H.; Mueller, B.; Niculescu, G.; Niculescu, I.; Okayasu, Y.; Pentchev, L.; Perdrisat, C.; Pitz, D.; Potterveld, D.; Punjabi, V.; Qin, L.M.; Reimer, P.E.; Reinhold, J.; Roche, J.; Roos, P.G.; Sarty, A.; Shin, I.K.; Smith, G.R.; Stepanyan, S.; Tang, L.G.; Tvaskis, V.; van der Meer, R.L.J.; Vansyoc, K.; VanWestrum, D.; Vidakovic, S.; Vulcan, W.; Warren, G.; Wood, S.A.; Xu, C.; Yan, C.; Zhao, W.-X.; Zheng, X.; Zihlmann, B.; The Jefferson Lab Fπ Collaboration
    The charged pion form factor, Fπ(Q2), is an important quantity that can be used to advance our knowledge of hadronic structure. However, the extraction of Fπ from data requires a model of the 1H(e,e'π+)n reaction and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fπ are presented for Q2=0.60-2.45 GeV2. Above Q2=1.5 GeV2, the Fπ values are systematically below the monopole parametrization that describes the low Q2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q2 regime.
  • Thumbnail Image
    Item
    Recoil polarization measurements for neutral pion electroproduction at Q2=1(GeV/c)2 near the Δ resonance
    (2007-02) Kelly, J.J.; Gayou, O.; Roche, R.E.; Chai, Z.; Jones, M.K.; Sarty, A.J.; Frullani, S.; Aniol, K.; Beise, E.J.; Benmokhtar, F.; Bertozzi, W.; Boeglin, W.U.; Botto, T.; Brash, E.J.; Breuer, H.; Brown, E.; Burtin, E.; Calarco, J.R.; Cavata, C.; Chang, C.C.; Chant, N.S.; Chen, J.-P.; Coman, M.; Crovelli, D.; De Leo, R.; Dieterich, S.; Escoffier, S.; Fissum, K.G.; Garde, V.; Garibaldi, F.; Georgakopoulos, S.; Gilad, S.; Gilman, R.; Glashausser, C.; Hansen, J.-O.; Higinbotham, D.W.; Hotta, A.; Huber, G.M.; Ibrahim, H.; Iodice, M.; de Jager, C.W.; Jiang, X.; Kimenko, A.; Kozlov, A.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissiere, G.; LeRose, J.J.; Lindgren, R.A.; Liyange, N.; Lolos, G.J.; Lourie, R.W.; Margaziotis, D.J.; Marie, F.; Markowitz, P.; McAleer, S.; Meekins, D.; Michaels, R.; Milbrath, B.D.; Mitchell, J.; Nappa, J.; Neyret, D.; Perdrisat, C.F.; Potokar, M.; Punjabi, V.A.; Pussieux, T.; Ransome, R.D.; Roos, P.G.; Rvachev, M.; Saha, A.; Sirca, S.; Suleiman, R.; Strauch, S.; Templon, J.A.; Todor, L.; Ulmer, P.E.; Urciuoli, G.M.; Weinstein, L.B.; Wijsooriya, K.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.; Jefferson Laboratory E91011 and Hall A Collaborations
    We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q2=1.0 (GeV/c)2 in 10 bins of 1.17⩽W⩽1.35 GeV across the Δ resonance. A total of 16 independent response functions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near the physical mass, W=MΔ≈1.232 GeV, but the variation among models is large for response functions governed by imaginary parts, and for both types of response functions, the variation increases rapidly with W>MΔ. We performed a multipole analysis that adjusts suitable subsets of ℓπ⩽2 amplitudes with higher partial waves constrained by baseline models. This analysis provides both real and imaginary parts. The fitted multipole amplitudes are nearly model independent—there is very little sensitivity to the choice of baseline model or truncation scheme. By contrast, truncation errors in the traditional Legendre analysis of N→Δ quadrupole ratios are not negligible. Parabolic fits to the W dependence around MΔ for the multiple analysis gives values for Re(S1+/M1+)=(-6.61±0.18)% and Re(E1+/M1+)=(-2.87±0.19)% for the pπ0 channel at W=1.232 GeV and Q2=1.0 (GeV/c)2 that are distinctly larger than those from the Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+)=(+7.1±0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe.
  • Thumbnail Image
    Item
    Cross section measurements of charged pion photoproduction in hydrogen and deuterium from 1.1 to 5.5 GeV
    (2005-04) Zhu, L.Y.; Arrington, J.; Averett, T.; Beise, E.; Calarco, J.; Chang, T.; Chen, J.P.; Chudakov, E.; Coman, M.; Clasie, B.; Crawford, C.; Dieterich, S.; Dohrmann, F.; Dutta, D.; Fissum, K.; Frullani, S.; Gao, H.; Gilman, R.; Glashausser, C.; Gomez, J.; Hafidi, K.; Hansen, O.; Higinbotham, D.W.; Holt, R.J.; de Jager, C.W.; Jiang, X.; Kinney, E.; Kramer, K.; Kumbartzki, G.; LeRose, J.; Liyanage, N.; Mack, D.; Markowitz, P.; McCormick, K.; Meekins, D.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Nanda, S.; Potterveld, D.; Ransome, R.; Reimer, P.E.; Reitz, B.; Saha, A.; Schulte, E.C.; Seely, J.; Sirca, S.; Strauch, S.; Sulkosky, V.; Vlahovic, B.; Weinstein, L.B.; Wijesooriya, K.; Williamson, C.; Wojtsekhowski, B.; Xiang, H.; Xiong, F.; Xu, W.; Zeng, J.; Zheng, X.; Jefferson Lab Hall A Collaboration; Jefferson Lab E94-104 Collaboration
    The differential cross sections for the γn→π-p and the γp→π+n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50° to 110°. The π- and π+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing π+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios [dσ/dt(γn→π-p)/dσ/dt(γp→π+n)] at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.