Electrical & Computer Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/2234
Browse
2 results
Search Results
Item A comprehensive study of multiplicative attribute graph model(2016) Qu, Sikai; Makowski, Armand; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Graphs are powerful tools to describe social, technological and biological networks, with nodes representing agents (people, websites, gene, etc.) and edges (or links) representing relations (or interactions) between agents. Examples of real-world networks include social networks, the World Wide Web, collaboration networks, protein networks, etc. Researchers often model these networks as random graphs. In this dissertation, we study a recently introduced social network model, named the Multiplicative Attribute Graph model (MAG), which takes into account the randomness of nodal attributes in the process of link formation (i.e., the probability of a link existing between two nodes depends on their attributes). Kim and Lesckovec, who defined the model, have claimed that this model exhibit some of the properties a real world social network is expected to have. Focusing on a homogeneous version of this model, we investigate the existence of zero-one laws for graph properties, e.g., the absence of isolated nodes, graph connectivity and the emergence of triangles. We obtain conditions on the parameters of the model, so that these properties occur with high or vanishingly probability as the number of nodes becomes unboundedly large. In that regime, we also investigate the property of triadic closure and the nodal degree distribution.Item Modeling Heterogeneous SoCs with SystemC: A Digital/MEMS Case Study(2006-10) Varma, Ankush; Afridi, M. Yaqub; Akturk, Akin; Klein, Paul; Hefner, Allen R.; Jacob, BruceDesigners of SoCs with non-digital components, such as analog or MEMS devices, can currently use high-level system design languages, such as SystemC, to model only the digital parts of a system. This is a significant limitation, making it difficult to perform key system design tasks — design space exploration, hardware-software co-design and system verification — at an early stage. This paper describes lumped analytical models of a class of complex non-digital devices — MEMS microhotplates — and presents techniques to integrate them into a SystemC simulation of a heterogeneous System-on-a-Chip (SoC). This approach makes the MEMS component behavior visible to a full-system simulation at higher levels, enabling realistic system design and testing. The contributions made in this work include the first SystemC models of a MEMS-based SoC, the first modeling of MEMS thermal behavior in SystemC, and a detailed case study of the application of these techniques to a real system. In addition, this work provides insights into how MEMS device-level design decisions can significantly impact system level behavior; it also describes how full-system modeling can help detect such phenomena and help to address detected problems early in the design flow.