Office of Undergraduate Research

Permanent URI for this communityhttp://hdl.handle.net/1903/20157

Emphasizing equitable and inclusive access to research opportunities, the University of Maryland's Office of Undergraduate Research (OUR) empowers undergraduates and faculty to engage and succeed in inquiry, creative activity, and scholarship. This collection includes materials shared by undergraduate researchers during OUR events. It also encompasses materials from Undergraduate Research Day 2020, Undergraduate Research Day 2021, and Undergraduate Research Day 2022, which were organized by the Maryland Center for Undergraduate Research.

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Accessible, In-Lab Cell-Free Expression System for Biosensor Development
    (2025-04) Meyer, Jonathon; Amankwah, Amma; Bansal, Navya; Kotoulek, Klara; Marin, Andrea; Sembria, Maricka; Spirito, Catherine
    Early detection of medical and environmental conditions is difficult, as external markers may develop long after cellular and molecular markers do. There is a need for point-of-care devices that can quickly and easily detect these markers in various samples. RNA-based fluorescent biosensors offer an easily customizable solution for detection and reporting. A major limiting factor in the deployment of biosensors is their reliance on living cells; cell-free protein expression (CFPE) systems can overcome this barrier. However, commercial CFPE kits are expensive, which hinders their overall use and deployability, especially in low-income settings. To address this pressing challenge, we developed our own Rosetta 2(DE3)pLysS E. coli cell-free protein expression system that can be produced at a lower cost. To evaluate its performance, we compared it to a commercially available kit with standardized fluorescent reporters. While our design underperformed commercially available lysate, it performed comparably to a lysate developed by the U.S. Army Combat Capabilities Development Command (DEVCOM). We aim to optimize our lysate and protocols to further increase performance and develop point-of-care devices for disease biomarkers of interest.
  • Item
    Development of a Cell-Free Heme Biosensor
    (2024) Ly, Andrew; Savage, Emily; Bansal, Navya; Herbert, Xan; Spirito, Catherine
  • Item
    CerviCare: A Point of Care Screening Device for Cervical Precancer
    (iGEM, 2024-04) Bansal, Navya; Firdaus, Sarah; Jocić, Mia; Meyer, Jonathon; Valdés, Trinidad Cubillos; Wu, Jonathan; Jaranson, Renee; Zhang, Kevin; Ferguson, Graham; Adu-Osei, Krista; Namputhiripad, Aditi; Harel, Dana; Lu, Rebecca; Hussain, Haider; Wang, Miranda; Gadigi, Aditri; Senthilkumar, Abhi; Kahn, Jason; Eisenstein, Edward
    Cervical cancer remains a significant health burden, especially in regions with limited access to diagnostic facilities. To combat this, the UMaryland iGEM Team is developing an inexpensive point-of-care cervical precancer screening tool. Utilizing red fluorescent protein (RFP), this tool will provide a reliable color-based output upon detecting specific miRNAs (miR-21, miR-199a, and miR-155-5p) associated with cervical precancer. Our detection approach combines toehold switch and novel synthetic RNA technologies. Toehold switches serve as recognition elements, enabling target miRNA detection with high sensitivity and specificity. Our synthetic RNA ribozyme device will utilize both a novel miRNA sensor and self-cleaving properties to achieve similar sensitivity and specificity. Utilizing two cell-free devices in tandem will allow us to increase the accuracy of our screening device, which will be a paper assay system. Finally, through careful design and optimization, we aim to produce this device at low-cost and simplify it to require minimal training, enabling its use in resource-limited areas.