College of Agriculture & Natural Resources

Permanent URI for this communityhttp://hdl.handle.net/1903/1598

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    GENOMICS ENABLED GENE DISCOVERY IN DIPLOID AND POLYPLOID WHEAT
    (2024) Yadav, Inderjit Singh; Tiwari, Vijay; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Hexaploid bread wheat (Triticum aestivum) is one of the most important staple food crops for humans. Sustainable genetic improvement in wheat is critical for ensuring global food security and requires the introduction of new genes and alleles into elite wheat cultivars. The progenitor species and wild wheat relatives are a reservoir of genetic diversity for wheat improvement. This doctoral thesis demonstrates the application of genomic resources and bioinformatics pipelines to characterize the wild germplasm and to streamline the gene discovery pipeline using five diverse species involving wheat progenitor, wild, and related species. Genomics-assisted characterization of the genetic diversity present in gene banks is a major step towards the systematic utilization of unexploited germplasm to ensure the sustainable development of new varieties. Toward this end, we used genomics datasets to curate wild and related accessions of tetraploid wheat from two distinct species Triticum turgidum and Triticum timopheevii. Using Genotyping by sequencing (GBS) data and a unique similarity matrix and powercore analysis, a set of 102 accessions were identified as the core set accessions that represent 20 and 35 percent of the total accessions of the WGRC tetraploid wheat collection of T. turgidum and T. timopheevii, respectively. Further, three distinct centers of rich genetic diversity were identified for wild and domesticated emmer and T. timopheevii in the Fertile Crescent. GWAS analysis of the genotypic and phenotypic dataset identified a novel QTL for leaf rust resistance on chromosome 2B in T. timopheevii. Triticale is a man-made cereal derived from a cross between tetraploid and hexaploid wheat with diploid rye. There are large numbers of triticale germplasm available in different gene banks; however, in many cases, the ploidy information is not accurate and affects the quality of work with large triticale germplasm. In this work, using the low-cost GBS datasets, a pipeline was developed to detect contamination in the UMD triticale collection and facilitated the accurate classification of ploidy, ensuring the purity of the triticale germplasm. This approach identified contamination of 11 wheat accessions and enabled the correct classification of 236 hexaploid and 12 octoploid triticale, these results were further confirmed through GISH experiments. Wild and related germplasms are considered as the goldmine of genetic diversity for wheat improvement. The modern wheat cultivars have gone through several rounds of heavy selections for yield related traits and have lost the genetic diversity against several abiotic and biotic stresses. On the other hand, wild relatives of wheat have been growing naturally without any substantial artificial selection pressure and it allowed them to preserve their genetic diversity. This study investigates the genetic diversity of a selected set of genes to visualize the differences in wild wheat relatives and polyploid wheat cultivars. To study these differences, group 5 chromosome of Aegilops geniculata and Aegilops umbellulata, belonging to the tertiary gene pool, were assembled. Comparative analysis revealed a higher rate of pseudogenization in bread wheat compared to these two wild relatives, primarily due to the difference in exon/intron length between the genes, rendering these genes non-functional. Diploid einkorn wheat (Triticum monococcum), with inherent disease resistance, offers a valuable resource for wheat improvement. To facilitate its proper utilization, two of the reference genomes-one wild (T. monococcum ssp. aegilopoides) and one domesticated (T. monococcum ssp. monococcum) were assembled in the study. Kmer-GWAS identified seven novel QTLs associated with powdery mildew resistance, three for leaf rust resistance, and two for stem rust resistance. These QTLs harbor diverse gene classes encoding for resistance gene analogs, cysteine-rich receptor kinases, transcription factors, and G-type lectins. Overall, the knowledge and resources developed in this research would contribute to the characterization of vast germplasm and the development of climate-resilient wheat.
  • Thumbnail Image
    Item
    A WIDE SCALE INVESTIGATION INTO LNCRNA IN BOS TAURUS
    (2023) Marceau, Alexis; Ma, Li; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Although the history of genetic research has focused on genes and gene products, there is an interesting emerging subclass of genetic elements: long noncoding RNAs (lncRNAs). These are portions of the genome that are longer than 200 base pairs in length and are transcribed from DNA to RNA but do not yield a protein. The function of lncRNA is wide reaching and difficult to define; however, they are predominantly linked to the regulation of gene expression. This is done via transcriptional control, translation control, pre- and post- transcriptional and translational control, epigenetic modifications, RNA processing,as well as other methods. In this dissertation, multiple Bos taurus tissues across various life conditions were investigated in order to identify lncRNA and to begin making predictions about the role and function of identified transcripts. First, lncRNA were identified and analyzed in Bos taurus rumen tissue in pre-weaning and post-weaning cattle. lncRNA were implicated in the weaning process and demonstrated enrichment in complex traits, indicating the continued impact rumen-associated lncRNA have on dairy cattle. Following this study, mammary tissues from dry and lactating cattle were used for lncRNA analysis, in relation to the lacta-tion processes. This study revealed both the presence and impact of mammary lncRNA, and identified lncRNA associated with genes and biological processes that are strongly linked to lactation and mammary tissue function. Subsequently, immune system related tissues were analyzed for lncRNA and their roles. This investigation demonstrated lncRNA to be present in all investigated tissues, including transcripts being repeatedly present. Further analysis into identified lncRNA associated transcripts with genes and functions that are crucial to immune response. Finally, a tutorial was created to make lncRNA identification research more easily accessible to future researchers. The findings and creations of this dissertation increase the knowledge base of lncRNA and their role, allowing for further research endeavors and improvements in Bos taurus husbandry.
  • Thumbnail Image
    Item
    AUGMENTING SEQUENCING TECHNOLOGY FOR BETTER INFERENCE IN SOIL MICROBIOME ANALYSIS
    (2023) Epp Schmidt, Dietrich; Yarwood, Stephanie A; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The advent of DNA sequencing revolutionized the field of microbiome research. Many organisms, by virtue of their codependence and/or growth rate, are either impossible or extremely challenging to get into pure culture. Sequencing allows important taxonomic and phylogenetic information to be obtained independent of culturing. Development of the sequencing technology itself has allowed for high throughput workflow that has allowed low cost and extensive sampling of microbiomes across environments. The co-development of reference datasets for taxonomy and functional assignments, along with open-source bioinformatics pipelines has further empowered scientists to explore microbiomes in many environments. However, there are limitations to sequence data that have constrained the ecological inferences in microbiome research. One such limitation, the compositional nature of sequence data, has impeded our ability to make accurate inferences about the environmental drivers of taxon abundance and covariance across conditions. In this dissertation I explore the use of quantitative PCR in combination with sequencing techniques to generate “Quantitative Sequencing” data (QSeq) that mitigates the limitations of compositionality on inferences relating to taxon abundance and covariance across environmental gradients. In chapter 1, I reviewed key characteristics of the soil environment and sequencing as a mechanism for sampling. In chapter 2, I leveraged modeling, synthesis, and literature review methods to establish the questions and data characteristics that demand QSeq methodology. I show that even small amounts of variation in total abundance make determining the effects of environment (biotic and abiotic factors) on any given taxon unreliable without QSeq. In Chapter 3, I extend the logic of quantitative sequencing to improve metagenome prediction from PICRUSt2. Using data synthesis methods, accounting for 16S gene abundance consistently improved the accuracy of predicted functional genes. This was confirmed by high correlations between predicted and measured gene abundance (QPCR). There was however a large variation in prediction accuracy, likely due in part to database biases and in part to decoupling of bacterial function from taxonomy. In Chapter 4, I applied QSeq in the context of an experimental, long-term farming system that has large gradients in total abundance with depth, and I used QSeq to identify taxa that changed in abundance due to different farming system management and soil depth. Finally in Chapter 5, I used QSeq to identify putative N-fixing taxa that responded to glyphosate in four experimental farming systems. I show that the abundance of these taxa were decoupled from other effects of glyphosate on N-fixation in soybean across farming systems.
  • Thumbnail Image
    Item
    Investigating the hyperdiversity of fungal endophytes in wild Rubiaceae tropical plants and coffee plantations.
    (2022) Castillo Gonzalez, Humberto; Yarwood, Stephanie A; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Fungal endophytes are an essential component of a plant’s microbiome, their effect spreads to fitness, disease dynamics, stress tolerance, water acquisition and nutrient uptake. Plant ecosystems, from natural forest to plantations bear the indelible signature of its presence. The current investigation was designed to understand the diversity of endophytes in the Rubiaceae family, in plants associated to natural and managed ecosystems. The effect of location, leaf developmental stage, tissue type, host genotype, and anthropogenic interference was evaluated through amplicon sequencing. Costa Rica served as base for the sample collection. Leaves and sapwood from a variety of tropical plant species were collected in old-growth natural forests and foliar tissue from domesticated coffee plants were sampled in two plantations under different management. Fungal diversity was assessed by metabarcoding using the ITS2 nrDNA region fITS7 – ITS4, and library sequencing was completed by Ion Torrent. We identified a hyperdiversity of endophytes inhabiting these plants and were able to isolate a total of 659 fungi from coffee leaves. This investigation provides relevant information about overall community composition, the ecological drivers of community assemblage and the characteristics of the fungal endophytic communities, including potential interactions among the identified taxa. Endophytes may harness the potential to transform agriculture and conservation science, however we currently lack the knowledge to engineer microbial communities through breeding or management. It is essential to continue the efforts on understanding community functions and dynamics, and how host, endophyte interactions, and other ecological and human- related mechanisms influence their diversity in both forest species and agronomically important crops.
  • Thumbnail Image
    Item
    REDUCED CAMPYLOBACTER INFECTION AND ENHANCED PERFORMANCE IN POULTRY WITH BIOACTIVE PHENOLICS THROUGH EPIGENETIC MODULATION OF THE GUT MICROBIOME
    (2017) Salaheen, Serajus; Biswas, Debabrata; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Campylobacter jejuni, a major enteric pathogen and a natural resident in the poultry gut, causes gastrointestinal illness followed by severe post-infection complications, including Guillain-Barré syndrome, reactive arthritis, myocarditis, and ulcerative colitis in humans. Risk assessment studies have projected a 30-fold reduction in human campylobacteriosis cases with only a 100-fold reduction in the number of C. jejuni colonizing the poultry gut. Current commercial poultry production practices involve use of antibiotic growth promoters (AGP); modulation of gut microbiota with AGPs for food safety and enhanced performance in poultry can be justified until acquisition of antibiotic resistance in zoonoses through inter-bacterial transfer of antibiotic resistance genes (ARGs) in a complex microbial community is considered. As an alternative, natural phenolics extracted from by-products of berry juice industry, with antimicrobial, anti-inflammatory, anticarcinogenic, antioxidant and vasodilatory activities, demonstrate promising prospects. In this study, we adopted mass-spectrometry, microbiological, phylogenetic, and metagenomic approaches to evaluate bioactive phenolic extracts (BPE) from blueberry (Vaccinium corymbosum) and blackberry (Rubus fruticosus) pomaces as AGP alternative. We detected that major phenolics in BPE included, but were not limited to, apigenin, catechol, chlorogenic acid, cinnamic acid, coumarin, ellagic acid, eugenols, flavan, gallic acid, gingerol, glucosides, glucuronides, myricetin, phenols, quercetin, quinones, rhamnosides, stilbenol, tannins, triamcinolone, and xanthine. BPE reduced C. jejuni growth and motility in vitro, resulting in lower adherence and invasiveness to chicken fibroblast cells. Anti-inflammatory effects of BPE significantly reduced the expression of pro-inflammatory cytokine genes in chick macrophage cell line ex vivo. Furthermore, BPE reduced the colonization of C. jejuni in broiler cecum by 1 to 5 logs while increasing broiler weight by 6% compared to 9.5% with commercial AGPs. Metagenomic analysis of broiler gut indicated that BPE caused an AGP-like pattern in bacterial communities with a comparative increase of Firmicutes and a concomitant reduction of Bacteroidetes in broiler ceca. AGP supplementation clearly caused phage induction and a richer resistome profile in the cecal microbiome compared to BPE. Functional characterization of cecal microbiomes revealed a significant variation in the abundance of genes involved in energy and carbohydrate metabolism. Our findings established a baseline upon which mechanisms of plant based antimicrobial performance-enhancers in regulation of animal growth can be investigated.
  • Thumbnail Image
    Item
    The Ecology of Urbanization: A Study of Soil Microbial Community Rosponse
    (2016) Epp Schmidt, Dietrich Jonathan; Yarwood, Stephanie A; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Urbanization is associated with global biodiversity loss of macrophauna and flora through direct and indirect mechanisms, but to date few studies have examined urban soil microbes. Although there are numerous studies on the influence of agricultural management on soil microbial community composition, there has been no global-scale study of human control over urban soil microbial communities. This thesis extends the literature of urban ecology to include soil microbial communities by analyzing soils that are part of the Global Urban Soil Ecology and Education Network (GLUSEEN). Chapter 1 sets the context for urban ecology; Chapters 2 addresses patterns of community assembly, biodiversity loss, and the phylogenetic relationships among community members; Chapter 3 addresses the metabolic pathways that characterize microbial communities existing under different land-uses across varying geographic scales; and Chapter 4 relates Chapter 2 and 3 to one another and to evolutionary theory, tackling assumptions that are particular to microbial ecology.
  • Thumbnail Image
    Item
    Integrative genomic, epigenetic and metabolomic characterization of beef from grass-fed Angus steers
    (2016) Carrillo Tabakman, Jose Adrian; Song, Jiuzhou; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Beef constitutes a main component of the American diet and still represent the principal source of protein in many parts of the world. Currently, the meat market is experiencing an important transformation; consumers are increasingly switching from consuming traditional beef to grass-fed beef. People recognized products obtained from grass-fed animals as more natural and healthy. However, the true variations between these two production systems regarding various aspects remain unclear. This dissertation provides information from closely genetically related animals, in order to decrease confounding factors, to explain several confused divergences between grain-fed and grass-fed beef. First, we examined the growth curve, important economic traits and quality carcass characteristics over four consecutive years in grain-fed and grass-fed animals, generating valuable information for management decisions and economic evaluation for grass-fed cattle operations. Second, we performed the first integrated transcriptomic and metabolomic analysis in grass-fed beef, detecting alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation. Results suggest that grass finished beef could possibly benefit consumer health from having lower total fat content and better lipid profile than grain-fed beef. Regarding animal welfare, grass-fed animals may experience less stress than grain-fed individuals as well. Finally, we contrasted the genome-wide DNA methylation of grass-fed beef against grain-fed beef using the methyl-CpG binding domain sequencing (MBD-Seq) method, identifying 60 differentially methylated regions (DMRs). Most of DMRs were located inside or upstream of genes and displayed increased levels of methylation in grass-fed individuals, implying a global DNA methylation increment in this group. Interestingly, chromosome 14, which has been associated with large effects on ADG, marbling, back fat, ribeye area and hot carcass weight in beef cattle, allocated the largest number of DMRs (12/60). The pathway analysis identified skeletal and muscular system as the preeminent physiological system and function, and recognized carbohydrates metabolism, lipid metabolism and tissue morphology among the highest ranked networks. Therefore, although we recognize some limitations and assume that additional examination is still required, this project provides the first integrative genomic, epigenetic and metabolomics characterization of beef produced under grass-fed regimen.
  • Thumbnail Image
    Item
    Identification and characterization of long intergenic noncoding RNAs associated with Marek's disease resistance in chicken
    (2013) Zhan, Fei; Song, Jiuzhou; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Marek's disease (MD) is a highly contagious lymphomatous disease of chicken caused by Marek's disease virus (MDV). MDV has steadily evolved toward increased resistance and virulence over the past decades. A promising strategy for MD prevention and control would be the enhancement of genetic resistance. This study aimed to investigate the roles of long intergenic noncoding RNAs (lincRNAs) in MD resistance and susceptibility in chickens. We reported more than 1000 lincRNA loci in chicken. Computational functional annotation suggested that lincRNAs were involved in a wide range of biological processes. Moreover, distinct lincRNA expression signatures were observed between MD resistance and susceptible chickens. Additionally, a candidate lincRNA termed linc-stab1 was identified and it may play an important role in MD immune response by regulating a nearby protein-coding gene STAB1. In summary, our results demonstrated that lincRNAs also play an important role in MD resistance and provide good candidates for hypothesis-driven functional studies.
  • Thumbnail Image
    Item
    Genome-Wide Analysis of Histone Modification Enrichments Induced by Marek's Disease Virus in Inbred Chicken Lines
    (2013) Mitra, Apratim; Song, Jiuzhou; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Covalent histone modifications constitute a complex network of transcriptional regulation involved in diverse biological processes ranging from stem cell differentiation to immune response. The advent of modern sequencing technologies enables one to query the locations of histone modifications across the genome in an efficient manner. However, inherent biases in the technology and diverse enrichment patterns complicate data analysis. Marek's disease (MD) is an acute, lymphoma-inducing disease of chickens with disease outcomes affected by multiple host and environmental factors. Inbred chicken lines 63 and 72 share the same major histocompatibility complex haplotype, but have contrasting responses to MD. This dissertation presents novel methods for analysis of genome-wide histone modification data and application of new and existing methods to the investigation of epigenetic effects of MD on these lines. First, we present WaveSeq, a novel algorithm for detection of significant enrichments in ChIP-Seq data. WaveSeq implements a distribution-free approach by combining the continuous wavelet transform with Monte Carlo sampling techniques for effective peak detection. WaveSeq outperformed existing tools particularly for diffuse histone modification peaks demonstrating that restrictive distributional assumptions are not necessary for accurate ChIP-Seq peak detection. Second, we investigated latent MD in thymus tissues by profiling H3K4me3 and H3K27me3 in infected and control birds from lines 63 and 72. Several genes associated with MD, e.g. MX1 and CTLA–4, along with those linked with human cancers, showed line-specific and condition-specific enrichments. One of the first studies of histone modifications in chickens, our work demonstrated that MD induced widespread epigenetic variations. Finally, we analyzed the temporal evolution of histone modifications at distinct phases of MD progression in the bursa of Fabricius. Genes involved in several important pathways, e.g. apoptosis and MAPK signaling, and various immune-related miRNAs showed differential histone modifications in the promoter region. Our results indicated heightened inflammation in the susceptible line during early cytolytic MD, while resistant birds showed recuperative symptoms during early MD and epigenetic silencing during latent infection. Thus, although further elucidation of underlying mechanisms is necessary, this work provided the first definitive evidence of the epigenetic effects of MD.