College of Agriculture & Natural Resources

Permanent URI for this communityhttp://hdl.handle.net/1903/1598

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Antimicrobial Effect and Probiotic Potential of Phage Resistant Lactobacillus plantarum and its Interactions with Zoonotic Bacterial Pathogens
    (MDPI, 2019-06-05) Nagarajan, Vinod; Peng, Mengfei; Tabashsum, Zajeba; Salaheen, Serajus; Padilla, Joselyn; Biswas, Debabrata
    Development of phage-resistant probiotic particularly Lactobacillus is an alternative approach to enhance their beneficial effects as in animal feed supplements. In this study, we developed phage-resistant Lactobacillus plantarum (LP+PR) mutant and compared their antimicrobial effects and probiotic potential against zoonotic bacterial pathogens including Salmonella enterica serovar Typhimurium, enterohemorrhagic Escherichia coli (EHEC), Staphylococcus aureus, and Listeria monocytogenes with phage-sensitive L. plantarum (LP) strain. LP+PR strain showed markedly higher growth rate than wild-type LP strain. In co-culture with LP+PR and in the presence of cell-free cultural supernatants (CFCSs) of LP+PR, the growth of S. Typhimurium, EHEC, S. aureus, and L. monocytogenes were reduced significantly (P < 0.05). The adhesion ability of LP+PR was slightly higher than the LP on human epithelial INT-407 cells. Most importantly, LP+PR strain significantly inhibited the adhesive and invasive abilities of all four zoonotic pathogens to INT-407 cells (P < 0.05). Moreover, real-time qPCR revealed that in the presence of LP+PR strain or its CFCSs, expression of virulence genes of these zoonotic bacterial pathogens were suppressed significantly (P < 0.05). These findings suggest that the LP+PR strain is capable of inhibiting major zoonotic bacterial pathogens efficiently and would be a potential candidate for industrial usage in animal production or fermentation.
  • Thumbnail Image
    Item
    REDUCED CAMPYLOBACTER INFECTION AND ENHANCED PERFORMANCE IN POULTRY WITH BIOACTIVE PHENOLICS THROUGH EPIGENETIC MODULATION OF THE GUT MICROBIOME
    (2017) Salaheen, Serajus; Biswas, Debabrata; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Campylobacter jejuni, a major enteric pathogen and a natural resident in the poultry gut, causes gastrointestinal illness followed by severe post-infection complications, including Guillain-Barré syndrome, reactive arthritis, myocarditis, and ulcerative colitis in humans. Risk assessment studies have projected a 30-fold reduction in human campylobacteriosis cases with only a 100-fold reduction in the number of C. jejuni colonizing the poultry gut. Current commercial poultry production practices involve use of antibiotic growth promoters (AGP); modulation of gut microbiota with AGPs for food safety and enhanced performance in poultry can be justified until acquisition of antibiotic resistance in zoonoses through inter-bacterial transfer of antibiotic resistance genes (ARGs) in a complex microbial community is considered. As an alternative, natural phenolics extracted from by-products of berry juice industry, with antimicrobial, anti-inflammatory, anticarcinogenic, antioxidant and vasodilatory activities, demonstrate promising prospects. In this study, we adopted mass-spectrometry, microbiological, phylogenetic, and metagenomic approaches to evaluate bioactive phenolic extracts (BPE) from blueberry (Vaccinium corymbosum) and blackberry (Rubus fruticosus) pomaces as AGP alternative. We detected that major phenolics in BPE included, but were not limited to, apigenin, catechol, chlorogenic acid, cinnamic acid, coumarin, ellagic acid, eugenols, flavan, gallic acid, gingerol, glucosides, glucuronides, myricetin, phenols, quercetin, quinones, rhamnosides, stilbenol, tannins, triamcinolone, and xanthine. BPE reduced C. jejuni growth and motility in vitro, resulting in lower adherence and invasiveness to chicken fibroblast cells. Anti-inflammatory effects of BPE significantly reduced the expression of pro-inflammatory cytokine genes in chick macrophage cell line ex vivo. Furthermore, BPE reduced the colonization of C. jejuni in broiler cecum by 1 to 5 logs while increasing broiler weight by 6% compared to 9.5% with commercial AGPs. Metagenomic analysis of broiler gut indicated that BPE caused an AGP-like pattern in bacterial communities with a comparative increase of Firmicutes and a concomitant reduction of Bacteroidetes in broiler ceca. AGP supplementation clearly caused phage induction and a richer resistome profile in the cecal microbiome compared to BPE. Functional characterization of cecal microbiomes revealed a significant variation in the abundance of genes involved in energy and carbohydrate metabolism. Our findings established a baseline upon which mechanisms of plant based antimicrobial performance-enhancers in regulation of animal growth can be investigated.