Atmospheric & Oceanic Science

Permanent URI for this communityhttp://hdl.handle.net/1903/2264

Formerly known as the Department of Meteorology.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    NON-GAUSSIAN ENSEMBLE FILTERING AND ADAPTIVE INFLATION FOR SOIL MOISTURE DATA ASSIMILATION
    (2024) Dibia, Emmanuel; Liang, Xin-Zhong; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The forecast error distribution in modern day land data assimilation systems is typically modeled as a Gaussian. The explicit tracking of only the first two moments can be problematic when trying to assimilate bounded quantities like soil moisture that are more accurately described using more general parameterizations. Given this issue, it is worthwhile to test how performance of land models is affected when the accompanying data assimilation system abides by a relatively more relaxed set of underlying assumptions. To study this problem, we perform experiments using the ensemble Kalman filter (EnKF) and rank histogram filter (RHF) to assimilate surface soil moisture content observations into the NASA Catchment land surface model. The EnKF acts as the traditional (Gaussian) standard of comparison whereas the RHF represents the novel and more general data assimilation method. An additional parameter of our tests is the usage of an adaptive inflation scheme that is only applied to the ensemble prior. This is done in an attempt to mitigate the negative effects of systematic deficiencies not accounted for by either filter. The examinations were carried out at a number of globally-distributed test locations, deliberately coinciding with sites used to validate NASA SMAP soil moisture retrieval products. Initial comparisons of the two filtering approaches in a perfect model context show both filters to provide significant benefits to the soil moisture modeling problem, with the RHF edging out the EnKF as the more performant filter. The relative performance gain of the RHF was most noticeable with respect to bias mitigation metrics and to the surface-level anomaly correlation scores, an interesting result given that neither filter is formulated to explicitly accommodate a systematic bias. When additionally applying adaptive inflation, both filters showed improvement in skill but such improvements were not significant. The use of synthetic observations and lack of a bias correction implementation may have led to exaggerated results. To address this concern, the experiments were performed again but using real observations from SMAP soil moisture retrievals, with in situ validation data proxying as truth. A robust bias correction scheme was used as well to more closely approximate practices used in operational settings. The RHF continues to show better metrics than the EnKF, but no longer in a statistically significant sense. A similar result was noted with respect to inflation usage. The most likely reason for this outcome is the low observation count. The findings obtained from the data assimilation experiments in this dissertation offer insight on how best to focus development efforts in soil moisture modeling and land data assimilation.
  • Thumbnail Image
    Item
    Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging
    (MDPI, 2020-02-26) Noyes, Katherine Junghenn; Kahn, Ralph; Sedlacek, Arthur; Kleinman, Lawrence; Limbacher, James; Li, Zhanqing
    Emitted smoke composition is determined by properties of the biomass burning source and ambient ecosystem. However, conditions that mediate the partitioning of black carbon (BC) and brown carbon (BrC) formation, as well as the spatial and temporal factors that drive particle evolution, are not understood adequately for many climate and air-quality related modeling applications. In situ observations provide considerable detail about aerosol microphysical and chemical properties, although sampling is extremely limited. Satellites offer the frequent global coverage that would allow for statistical characterization of emitted and evolved smoke, but generally lack microphysical detail. However, once properly validated, data from the National Aeronautics and Space Administration (NASA) Earth Observing System’s Multi-Angle Imaging Spectroradiometer (MISR) instrument can create at least a partial picture of smoke particle properties and plume evolution. We use in situ data from the Department of Energy’s Biomass Burning Observation Project (BBOP) field campaign to assess the strengths and limitations of smoke particle retrieval results from the MISR Research Aerosol (RA) retrieval algorithm. We then use MISR to characterize wildfire smoke particle properties and to identify the relevant aging factors in several cases, to the extent possible. The RA successfully maps qualitative changes in effective particle size, light absorption, and its spectral dependence, when compared to in situ observations. By observing the entire plume uniformly, the satellite data can be interpreted in terms of smoke plume evolution, including size-selective deposition, new-particle formation, and locations within the plume where BC or BrC dominates.
  • Thumbnail Image
    Item
    Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign
    (MDPI, 2020-11-21) Junghenn Noyes, Katherine T.; Kahn, Ralph A.; Limbacher, James A.; Li, Zhanqing; Fenn, Marta A.; Giles, David M.; Hair, Johnathan W.; Katich, Joseph M.; Moore, Richard H.; Robinson, Claire E.; Sanchez, Kevin J.; Shingler, Taylor J.; Thornhill, Kenneth L.; Wiggins, Elizabeth B.; Winstead, Edward L.
    Although the characteristics of biomass burning events and the ambient ecosystem determine emitted smoke composition, the conditions that modulate the partitioning of black carbon (BC) and brown carbon (BrC) formation are not well understood, nor are the spatial or temporal frequency of factors driving smoke particle evolution, such as hydration, coagulation, and oxidation, all of which impact smoke radiative forcing. In situ data from surface observation sites and aircraft field campaigns offer deep insight into the optical, chemical, and microphysical traits of biomass burning (BB) smoke aerosols, such as single scattering albedo (SSA) and size distribution, but cannot by themselves provide robust statistical characterization of both emitted and evolved particles. Data from the NASA Earth Observing System’s Multi-Angle Imaging SpectroRadiometer (MISR) instrument can provide at least a partial picture of BB particle properties and their evolution downwind, once properly validated. Here we use in situ data from the joint NOAA/NASA 2019 Fire Influence on Regional to Global Environments Experiment-Air Quality (FIREX-AQ) field campaign to assess the strengths and limitations of MISR-derived constraints on particle size, shape, light-absorption, and its spectral slope, as well as plume height and associated wind vectors. Based on the satellite observations, we also offer inferences about aging mechanisms effecting downwind particle evolution, such as gravitational settling, oxidation, secondary particle formation, and the combination of particle aggregation and condensational growth. This work builds upon our previous study, adding confidence to our interpretation of the remote-sensing data based on an expanded suite of in situ measurements for validation. The satellite and in situ measurements offer similar characterizations of particle property evolution as a function of smoke age for the 06 August Williams Flats Fire, and most of the key differences in particle size and absorption can be attributed to differences in sampling and changes in the plume geometry between sampling times. Whereas the aircraft data provide validation for the MISR retrievals, the satellite data offer a spatially continuous mapping of particle properties over the plume, which helps identify trends in particle property downwind evolution that are ambiguous in the sparsely sampled aircraft transects. The MISR data record is more than two decades long, offering future opportunities to study regional wildfire plume behavior statistically, where aircraft data are limited or entirely lacking.
  • Thumbnail Image
    Item
    High Resolution Remote Sensing Observations of Summer Sea Ice
    (2022) Buckley, Ellen Margaret; Farrell, Sinéad L; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    During the Arctic summer melt season, the sea ice transitions from a consolidated ice pack with a highly reflective snow-covered surface to a disintegrating unconsolidated pack with melt ponds spotting the ice surface. The albedo of the Arctic decreases by up to 50%, resulting in increased absorption of solar radiation, triggering the positive sea ice albedo feedback that further enhances melting. Summer melt processes occur at a small scale and are required for melt pond parameterization in models and quantifying albedo change. Arctic-wide observations of melt features were however not available until recently. In this work we develop original techniques for the analysis of high-resolution remote sensing observations of summer sea ice. By applying novel algorithms to data acquired from airborne and satellite sensors onboard IceBridge, Sentinel-2, WorldView and ICESat-2, we derive a set of parameters that describe melt conditions on Arctic sea ice in summer. We present a new, pixel-based classification scheme to identify melt features in high-resolution summer imagery. We apply the classification algorithm to IceBridge Digital Mapping System data and find a greater melt pond fraction (25%) on sea ice in the Beaufort and Chukchi Seas, a region consisting of predominantly first year ice, compared to the Central Arctic, where the melt pond fraction is 14% on predominantly multiyear ice. Expanding the study to observations acquired by the Sentinel-2 Multispectral Instrument, we track the variability in melt pond fraction and sea ice concentration with time, focusing on the anomalously warm summer of 2020. So as to obtain a three-dimensional view of the evolution of summer melt we also exploit ICESat-2 surface elevation measurements. We develop and apply the Melt Pond Algorithm to track ponds in ICESat-2 photon cloud data and derive their depth. Pond depth measurements in conjunction with melt pond fraction and sea ice concentration provide insights into the regional patterns and temporal evolution of melt on summer sea ice. We found mean melt pond fraction increased rapidly in the beginning of the melt season, peaking at 16% on 24 June 2020, while median pond depths increased steadily from 0.4 m at the beginning of the melt season, to peaking at 0.97 m on 16 July, even as melt pond fraction had begun to decrease. Our findings may be used to improve parameterization of melt processes in models, quantify freshwater storage, and study the partitioning of under ice light.
  • Thumbnail Image
    Item
    Satellite Remote Sensing of Smoke Particle Optical Properties, Their Evolution and Controlling Factors
    (2021) Junghenn, Katherine Teresa; Li, Zhanqing; Kahn, Ralph A.; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The optical and chemical properties of biomass burning (BB) smoke particles greatly affect the impact wildfires have on climate and air quality. Previous work has demonstrated some links between smoke properties and factors such as fuel type and meteorology. However, the factors controlling BB particle speciation at emission are not adequately understood, nor are those driving particle aging during atmospheric transport. As such, modeling wildfire smoke impacts on climate and air quality remains challenging. The potential to provide robust, statistical characterizations of BB particles based on ecosystem and ambient conditions with remote sensing data is investigated here. Space-based Multi-angle Imaging Spectrometer (MISR) observations, combined with the MISR Research Aerosol (RA) algorithm and the MISR Interactive Explorer (MINX) tool, are used to retrieve smoke plume aerosol optical depth (AOD), and to provide constraints on plume vertical extent, smoke age, and particle size, shape, light-absorption, and absorption spectral dependence. These capabilities are evaluated using near-coincident in situ data from two aircraft field campaigns. Results indicate that the satellite retrievals successfully map particle-type distributions, and that the observed trends in retrieved particle size and light-absorption can be reliably attributed to aging processes such as gravitational settling, oxidation, secondary particle formation, and condensational growth. The remote-sensing methods are then applied to numerous wildfire plumes in Canada and Alaska that are not constrained by field observations. For these plumes, satellite measurements of fire radiative power and land cover characteristics are also collected, as well as short-term meteorological data and drought index. We find statistically significant differences in the retrieved smoke properties based on land cover type, with fires in forests producing the tallest and thickest plumes containing the largest, brightest particles, and fires in savannas and grasslands exhibiting the opposite. Additionally, the inferred dominant aging mechanisms and the timescales over which they occur vary between land types. This work demonstrates the potential of remote sensing to constrain BB particle properties and the mechanisms governing their evolution, over entire ecosystems. It also begins to realize this potential, as a means of improving regional and global climate and air quality modeling in a rapidly changing world.