Materials Science & Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/2260
Browse
3 results
Search Results
Item Nanocellulose-Carboxymethylcellulose Electrolyte for Stable, High-Rate Zinc-Ion Batteries(Wiley, 2023-04-02) Xu, Lin; Meng, Taotao; Zheng, Xueying; Li, Tangyuan; Brozena, Alexandra H.; Mao, Yimin; Zhang, Qian; Clifford, Bryson Callie; Rao, Jiancun; Hu, LiangbingAqueous Zn ion batteries (ZIBs) are one of the most promising battery chemistries for grid-scale renewable energy storage. However, their application is limited by issues such as Zn dendrite formation and undesirable side reactions that can occur in the presence of excess free water molecules and ions. In this study, a nanocellulose-carboxymethylcellulose (CMC) hydrogel electrolyte is demonstrated that features stable cycling performance and high Zn2+ conductivity (26 mS cm−1), which is attributed to the material's strong mechanical strength (≈70 MPa) and water-bonding ability. With this electrolyte, the Zn-metal anode shows exceptional cycling stability at an ultra-high rate, with the ability to sustain a current density as high as 80 mA cm−2 for more than 3500 cycles and a cumulative capacity of 17.6 Ah cm−2 (40 mA cm−2). Additionally, side reactions, such as hydrogen evolution and surface passivation, are substantially reduced due to the strong water-bonding capacity of the CMC. Full Zn||MnO2 batteries fabricated with this electrolyte demonstrate excellent high-rate performance and long-term cycling stability (>500 cycles at 8C). These results suggest the cellulose-CMC electrolyte as a promising low-cost, easy-to-fabricate, and sustainable aqueous-based electrolyte for ZIBs with excellent electrochemical performance that can help pave the way toward grid-scale energy storage for renewable energy sources.Item Ultrahigh-Temperature Melt Printing of Multi-Principal Element Alloys(Nature Portfolio, 2022-11-07) Wang, Xizheng; Zhao, Yunhao; Chen, Gang; Zhao, Xinpeng; Liu, Chuan; Sridar, Soumya; Pizano, Luis Fernando Ladinos; Li, Shuke; Brozena, Alexandra H.; Guo, Miao; Zhang, Hanlei; Wang, Yuankang; Xiong, Wei; Hu, LiangbingMulti-principal element alloys (MPEA) demonstrate superior synergetic properties compared to single-element predominated traditional alloys. However, the rapid melting and uniform mixing of multi-elements for the fabrication of MPEA structural materials by metallic 3D printing is challenging as it is difficult to achieve both a high temperature and uniform temperature distribution in a sufficient heating source simultaneously. Herein, we report an ultrahigh-temperature melt printing method that can achieve rapid multielemental melting and uniform mixing for MPEA fabrication. In a typical fabrication process, multi-elemental metal powders are loaded into a hightemperature column zone that can be heated up to 3000 K via Joule heating, followed by melting on the order of milliseconds and mixing into homogenous alloys, which we attribute to the sufficiently uniform high-temperature heating zone. As proof-of-concept, we successfully fabricated single-phase bulk NiFeCrCo MPEA with uniform grain size. This ultrahigh-temperature rapid melt printing process provides excellent potential toward MPEA 3D printingItem Printable, high-performance solid-state electrolyte films(AAAS, 2020-11-18) Ping, Weiwei; Wang, Chengwei; Wang, Ruiliu; Dong, Qi; Lin, Zhiwei; Brozena, Alexandra H.; Dai, Jiaqi; Luo, Jian; Hu, LiangbingCurrent ceramic solid-state electrolyte (SSE) films have low ionic conductivities (10−8 to 10−5 S/cm ), attributed to the amorphous structure or volatile Li loss. Herein, we report a solution-based printing process followed by rapid (~3 s) high-temperature (~1500°C) reactive sintering for the fabrication of high-performance ceramic SSE films. The SSEs exhibit a dense, uniform structure and a superior ionic conductivity of up to 1 mS/cm. Furthermore, the fabrication time from precursor to final product is typically ~5 min, 10 to 100 times faster than conventional SSE syntheses. This printing and rapid sintering process also allows the layer-by-layer fabrication of multilayer structures without cross-contamination. As a proof of concept, we demonstrate a printed solid-state battery with conformal interfaces and excellent cycling stability. Our technique can be readily extended to other thin-film SSEs, which open previously unexplores opportunities in developing safe, high-performance solid-state batteries and other thin-film devices.