Information Studies

Permanent URI for this communityhttp://hdl.handle.net/1903/2249

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    PubMed related articles: a probabilistic topic-based model for content similarity
    (Springer Nature, 2007-10-30) Lin, Jimmy; Wilbur, W John
    We present a probabilistic topic-based model for content similarity called pmra that underlies the related article search feature in PubMed. Whether or not a document is about a particular topic is computed from term frequencies, modeled as Poisson distributions. Unlike previous probabilistic retrieval models, we do not attempt to estimate relevance–but rather our focus is "relatedness", the probability that a user would want to examine a particular document given known interest in another. We also describe a novel technique for estimating parameters that does not require human relevance judgments; instead, the process is based on the existence of MeSH ® in MEDLINE ®. The pmra retrieval model was compared against bm25, a competitive probabilistic model that shares theoretical similarities. Experiments using the test collection from the TREC 2005 genomics track shows a small but statistically significant improvement of pmra over bm25 in terms of precision. Our experiments suggest that the pmra model provides an effective ranking algorithm for related article search.
  • Thumbnail Image
    Item
    PageRank without hyperlinks: Reranking with PubMed related article networks for biomedical text retrieval
    (Springer Nature, 2008-06-06) Lin, Jimmy
    Graph analysis algorithms such as PageRank and HITS have been successful in Web environments because they are able to extract important inter-document relationships from manually-created hyperlinks. We consider the application of these techniques to biomedical text retrieval. In the current PubMed® search interface, a MEDLINE® citation is connected to a number of related citations, which are in turn connected to other citations. Thus, a MEDLINE record represents a node in a vast content-similarity network. This article explores the hypothesis that these networks can be exploited for text retrieval, in the same manner as hyperlink graphs on the Web. We conducted a number of reranking experiments using the TREC 2005 genomics track test collection in which scores extracted from PageRank and HITS analysis were combined with scores returned by an off-the-shelf retrieval engine. Experiments demonstrate that incorporating PageRank scores yields significant improvements in terms of standard ranked-retrieval metrics. The link structure of content-similarity networks can be exploited to improve the effectiveness of information retrieval systems. These results generalize the applicability of graph analysis algorithms to text retrieval in the biomedical domain.