Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    AN INTEGRATED ELECTROMAGNETIC MICRO-TURBO-GENERATOR SUPPORTED ON ENCAPSULATED MICROBALL BEARINGS
    (2011) Beyaz, Mustafa Ilker; Ghodssi, Reza; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation presents the development of an integrated electromagnetic micro-turbo-generator supported on encapsulated microball bearings for electromechanical power conversion in MEMS (Microelectromechanical Systems) scale. The device is composed of a silicon turbine rotor with magnetic materials that is supported by microballs over a stator with planar, multi-turn, three-phase copper coils. The micro-turbo-generator design exhibits a novel integration of three key technologies and components, namely encapsulated microball bearings, incorporated thick magnetic materials, and wafer-thick stator coils. Encapsulated microball bearings provide a robust supporting mechanism that enables a simple operation and actuation scheme with high mechanical stability. The integration of thick magnetic materials allows for a high magnetic flux density within the stator. The wafer-thick coil design optimizes the flux linkage and decreases the internal impedance of the stator for a higher output power. Geometrical design and device parameters are optimized based on theoretical analysis and finite element simulations. A microfabrication process flow was designed using 15 optical masks and 110 process steps to fabricate the micro-turbo-generators, which demonstrates the complexity in device manufacturing. Two 10 pole devices with 2 and 3 turns per pole were fabricated. Single phase resistances of 46Ω and 220Ω were measured for the two stators, respectively. The device was actuated using pressurized nitrogen flowing through a silicon plumbing layer. A test setup was built to simultaneously measure the gas flow rate, pressure, rotor speed, and output voltage and power. Friction torques in the range of 5.5-33µNm were measured over a speed range of 0-16krpm (kilo rotations per minute) within the microball bearings using spin-down testing methodology. A maximum per-phase sinusoidal open circuit voltage of 0.1V was measured at 23krpm, and a maximum per-phase AC power of 10µW was delivered on a matched load at 10krpm, which are in full-agreement with the estimations based on theoretical analysis and simulations. The micro-turbo-generator presented in this work is capable of converting gas flow into electricity, and can potentially be coupled to a same-scale combustion engine to convert high-density hydrocarbon energy into electrical power to realize a high-density power source for portable electronic systems.
  • Thumbnail Image
    Item
    Microturbopump Utilizing Microball Bearings
    (2008-08-05) Waits, Christopher Michael; Ghodssi, Reza; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation presents the development of a microfabricated turbopump capable of delivering fuel with the flow rates and pressures required for portable power generation. The device is composed of a spiral-groove viscous pump that is driven by a radial in-flow air turbine and supported using a novel encapsulated microball bearing. First, the encapsulated microball bearing and methods to investigate the wear and friction behaviors were developed. Two primary raceway designs, point-contact and planar-contact designs, were developed with the key design factor being wearing of the raceway. A modification to the planar-contact design was made for the final turbopump that reduced both wear and debris generation. Second, two air turbine platforms were developed using the encapsulated microball bearings to characterize both the bearing and the turbine drive mechanism. A tangential air turbine platform was first developed and characterized using the point-contact bearing mechanism. Rotational speeds >37,000 rpm were demonstrated and long-term operation (>24 hours) using this platform, but with large driving pressures (tens of psi) and large raceway wear (tens of microns). Furthermore, the circumferential asymmetry of the turbine design led to difficulty in measuring pressure distribution and sealing for pump applications. Results from the tangential air turbine platform led to an axisymmetric radial in-flow air turbine platform using a planar-contact bearing design. Rotational speeds greater than 85,000 rpm with turbine pressure differentials in the range of 1 psi were demonstrated using this platform. The wear of the raceway was observed to be on the order of single microns (a 10x improvement). The radial in-flow air turbine platform allowed an empirical model to be developed relating the friction torque to the rotational speed and load for the planar-contact bearing. This enabled calculation of the power balance for pumping and a method to characterize future bearing designs and materials. Lastly, a microfabricated turbopump was demonstrated based on a spiral-groove viscous pump and the radial in-flow turbine platform using the planar-contact bearing. Pumping operation was demonstrated with a differential pressure up to +0.3 psi and flow rates ranging from 35 mL/hour to 70 mL/hour, within the range relevant to portable power generation.
  • Thumbnail Image
    Item
    Benzocyclobutene-based Electric Micromachines Supported on Microball Bearings: Design, Fabrication, and Characterization
    (2007-11-21) Modafe, Alireza; Ghodssi, Reza; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.