Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
9 results
Search Results
Item Explorations of Carbon-Nanotube-Graphene-Oxide Inks: Printability, Radio-Frequency and Sensor Applications, and Reliability(2022) Zhao, Beihan; Das, Siddhartha SD; Dasgupta, Abhijit AD; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Carbon-Nanotube (CNT) is a novel functional material with outstanding electrical and mechanical properties, with excellent potential for various kinds of industrial applications. Additive manufacturing or 3D printing of CNT-based materials or inks has been studied extensively, and it is vital to have a thorough understanding of the fluid mechanics and colloidal science of CNT-based inks for ensuring optimum printability and the desired functionality of such CNT-based materials.In this dissertation, a custom-developed syringe-printable CNT-GO ink (GO: Graphene Oxide) is introduced and the fluid mechanics and colloidal science of this ink as well as the different devices (e.g., temperature sensor, humidity sensor, and RF antenna) fabricated with this ink are studied. The following topics are discussed in this dissertation: (1) the application and printability (in terms of the appropriate fluid mechanics and colloidal science) of CNT-based inks; (2) development of temperature sensors with CNT-GO inks; (3) development of humidity sensors with CNT-GO inks; (4) development of RF patch antenna with CNT-GO inks; and (5) evaporation-driven size-dependent nano-microparticulate three-dimensional deposits (CNTs serve as one type of nanoparticle examined in this part of the study). In Chapter 1 of this dissertation, a literature review is conducted on the application of CNT-based inks and the fluid mechanics and colloidal science issues dictating the printability and performance of such CNT-based inks. The problem statement and overall research plan are also introduced in this chapter. In Chapter 2, the development of our custom CNT-GO ink is introduced. Detailed material selection and the mechanism of shape-dependent arrest of coffee-stain effect, which ensured that the printable ink led to uniform deposition, are discussed in this chapter. Temperature sensor prototypes printed with the CNT-GO inks are also presented in Chapter 2. From Chapter 3 to Chapter 5, the performances of our CNT-GO based flexible temperature sensor, humidity sensor, and patch antenna prototypes are discussed. The ink printability on flexible thin PET films is studied, and a straightforward ‘peel-and-stick’ approach to use the CNT-trace (or patch)-bearing PET films on surfaces of widely varying wettabilities and curvatures as different prototypes is introduced. Excellent temperature and humidity sensitivity of our CNT-GO based sensors are presented in Chapter 3 and Chapter 4, and the potential of this CNT-GO material for fabrication of ultra-wideband (UWB) patch antennas is discussed in Chapter 5. Furthermore, the stability and reliability of these printed CNT-GO-based prototypes are also explored. In previous Chapters, the printed CNT-GO patterns were cured by evaporation-mediated deposition on flat substrates (i.e., 2D deposition spanning in x and y directions). This motivated the extension of the physics to the 3rd dimension and probing of particle deposition on a 3D substrate and particle deposition in all x, y, and z directions. Therefore, in Chapter 6, we perform an experiment to demonstrate this kind of possibility using three kinds of micro-nanoparticle-laden water-based droplets (i.e. coffee particles, silver nanoparticles, and CNTs). These droplets were first deposited at the bottom of an un-cured PDMS film; these droplets were lighter than the PDMS and hence, they rose to the top of the PDMS where they could have either attained a Neuman like state or simply remained as an undeformed spherical drop with the top of the drop breaching the air-liquid-PDMS interface. The calculations based on air-water, water-PDMS, and air-PDMS surface tension values confirmed that the Neuman like state was not possible, and the droplets were likely to retain their undeformed shapes as they breached the air-PDMS interface. The timescale differences between the fast PDMS curing and the slower droplet evaporation, led to the formation of spherical shape cavities inside the PDMS after completion of the curing, and allowed evaporation-driven deposition to occur in all x, y, and z directions inside the cavity, with the exact nature of the deposition being dictated by the sizes of the particles (as confirmed by the experiments conducted with coffee particles, silver nanoparticles, and CNTs). Finally, in Chapter 7, the major contributions of this dissertation and proposed future studies related to this dissertation work are listed.Item Electrical Properties of a Tube-in-a-Tube Semiconductor(2016) Ng, Allen Lee; Wang, YuHuang; Chemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Tube-in-a-tube (Tube^2) nanostructures were synthesized through the outer-wall selective covalent functionalization of double-walled carbon nanotubes (DWCNTs) at high functional densities. Upon functionalization, the properties of individual walls within the structure decouple resulting in an electrically insulating functional outer tube while the inner tube retains exceptional CNT properties. The exceptional electrical properties of Tube^2 semiconductor structures were demonstrated for applications that include molecular and biological sensors and patterning of CNTbased structures with electronic type specificity. Tube^2 thin film transistor (TFT) sensors exhibited simultaneous ultrahigh sensitivity and selectivity towards chemical and biological targets. Carboxylic acid terminated Tube^2 sensors displayed an NH3 sensitivity of 60 nM, which is comparable with small molecule aqueous solution detection using state-of-the-art TFT sensors while simultaneously attaining 6,000 times higher chemical selectivity towards a variety of amine containing analyte molecules over carboxylic acids. Similarly, 23-base ii oligonucleotide terminated Tube^2 sensors demonstrated concomitant sensitivity down to 5 nM towards their complementary sequence without amplification techniques and single mismatch selectivity without the use of a gate electrode. Unique sensor architectures can be designed with the requirement of a gate electrode, such as the creation of millimeter-scale point sensors. The optical features and unique structural features of Tube^2 thin films were also exploited to address the challenge of patterning CNT nanostructures with electronic type specificity. Patterned dot arrays and conductive pathways were created on an initially insulating Tube^2 thin film by tuning the resonance of the direct-writing laser with the electronic type of the inner tube (i.e., metallic or semiconducting). The successful patterning of Tube^2 thin films was unambiguously confirmed with in situ Raman spectral imaging and electrical characterization. Furthermore, a hybrid 2-D carbon nanostructure comprised of a functionalized graphene that covers a semiconducting (6,5) SWCNT network (fG/sSWCNT) was developed. The hybrid fG/sSWCNT nanostructure exhibits similar structural and electrical properties as a semiconducting Tube^2 thin film, but possesses a transconductance that is an order of magnitude larger than Tube^2 and ON/OFF ratios as high as 5400 without the useful of further processing steps such as electrical breakdown.Item ALD-ENABLED CATHODE-CATALYST ARCHITECTURES FOR LI-O2 BATTERIES(2015) Schroeder, Marshall Adam; Rubloff, Gary W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The Li-O2 electrochemical redox couple is one of the prime candidates for next generation energy storage. Known for its impressive theoretical metric for specific energy, even current practically obtainable values are competitive with state of the art Li-ion intercalation chemistries and the achievable performance of batteries featuring this nascent technology will continue to improve as fundamental scientific challenges in each component of the device are addressed. The positive electrode is particularly complicated by its role as a scaffold for oxygen reduction and evolution, exhibiting sluggish kinetics, poor chemical stability, and limited cyclability due to parasitic side reactions. Fortunately, recent Li-O2 research has shown some success in improving the performance and cyclability of these O2 cathodes by shifting toward nanostructured architectures with catalytic functionalizations. Atomic layer deposition (ALD) is one of the most promising enabling technologies for fabricating these complex heterostructures. Offering precise control of film thickness, morphology, and mass loading with excellent conformality, this vapor-phase deposition technique is applied in this work to deposit thin film and particle morphologies of different catalyst chemistries on mesostructured carbon scaffolds. This thesis dissertation discusses: (1) development of a lab-scale infrastructure for assembly, electrochemical testing, and characterization of Li-O2 battery cathodes including a custom test cell and a state of the art integrated system for fabrication and characterization, (2) design, fabrication, testing, and post-mortem characterization of a unique 3D cathode architecture consisting of vertically aligned carbon nanotubes on an integrated nickel foam current collector, (3) atomic layer deposition of heterogeneous ruthenium-based catalysts on a multi-walled carbon nanotube sponge to produce a freestanding, binder-free, mesoporous Li-O2 cathode with high capacity and long-term cyclability, (4) evaluation of dimethyl sulfoxide as an electrolyte solvent for non-aqueous Li-O2 batteries, and (5) investigation of the relative importance of passivating intrinsic defects in carbon redox scaffolds vs. introduction of heterogeneous OER/ORR catalysts for improving the long-term stability and cyclability of these Li-O2 electrodes.Item CHEMICAL FUNCTIONALIZATION OF CARBON NANOTUBES FOR CONTROLLED OPTICAL, ELECTRICAL AND DISPERSION PROPERTIES(2013) Brozena, Alexandra; Wang, YuHuang; Chemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A carbon nanotube is a graphitic sheet, rolled into a one-dimensional, hollow tube. This structure provides certain individual nanotubes with high conductivity and near-infrared optical activity. These properties are not necessarily translated at the macroscale, however, due to strong van der Waals attractive forces that determine the behavior at the bulk level - exemplified by aggregation of nanotubes into bundles with significantly attenuated functionality. Different methods of carbon nanotube covalent functionalization are studied to improve dispersion while simultaneously maintaining intrinsic electrical and optical properties. In addition to retention of known behavior, new carbon nanotube photoluminescence pathways are also revealed as a result of this same covalent functionalization strategy. With various wet chemistries, including super-acid oxidation, the Billups-Birch reaction, and various diazonium based reactions, that utilize strong reducing or oxidizing conditions to spontaneously exfoliate aggregated carbon nanotubes, we are able to covalently functionalize individually dispersed nanotubes in a highly scalable manner. Covalent addition to the nanotube sidewalls converts the native sp2 hybridized carbon atoms to sp3 hybridization, which helps disrupt inter-tube van der Waals forces. However, this change in hybridization also perturbs the carbon nanotube electronic structure, resulting in an undesired loss of electrical conductivity and optical activity. We observe that controlling the location of functionalization, such as to the outer-walls of double-walled carbon nanotubes or as discrete functional "bands," we avert the loss of desirable properties by leaving significant tracts of sp2 carbon atoms unperturbed. We also demonstrate that such functional groups can act as electron and hole traps through the creation of a potential well deviation in the carbon nanotube electronic structure. This defect-activated carrier trapping primes the formation of charged excitons (trions) which are observed as redshifted photoluminescence in the near-infrared region. Implications and impacts of these covalent functionalization strategies will be discussed.Item High Frequency Electrical Transport Properties of Carbon Nanotubes(2010) Cobas, Enrique Darío; Fuhrer, Michael S; Takeuchi, Ichiro; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Carbon nanotubes (CNTs) have extraordinary electronic properties owing to the unique band structure of graphene and their one-dimensional nature. Their small size and correspondingly small capacitances make them candidates for novel high-frequency devices with cut-off frequencies approaching one terahertz, but their high individual impedance hampers measurements of their high-frequency transport properties. In this dissertation, I describe the fabrication of carbon nanotube Schottky diodes on high-frequency compatible substrates and the measurement of their rectification at frequencies up to 40GHz as a method of examining the high-frequency transport of individual CNTs despite their high impedance. The frequency dependence of the rectified signal is then used to extract the Schottky junction capacitance as a function of applied bias and ambient doping and to look for resonances which might be a signature of a room-temperature Luttinger Liquid.Item EXPLORATION OF NOVEL METHODS FOR THE FABRICATION AND CHARACTERIZATION OF ORGANIC FIELD-EFFECT TRANSISTORS AND EXAMINATION OF FACTORS INFLUENCING OFET PERFORMANCE(2009) Southard, Adrian Edward; Fuhrer, Michael S.; Chemical Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This thesis explores novel methods for fabricating organic field effect transistors (OFETs) and characterizing OFET devices. Transfer printing is a promising process for fabricating organic thin-film devices. In this work, a transfer-printing process is developed for the polymer organic semiconductor P3HT. Pre-patterned P3HT is printed onto different dielectrics such as PMMA, polystyrene and polycarbonate. The P3HT layer is spun on a smooth silicon interface made hydrophobic by treatment with octyltrichlorosilane, which functions as a release layer. This method has distinct advantages over standard OFET fabrication methods in that 1) the active layer can be pre-patterned, 2) the solvent for the P3HT need not be compatible with the target substrate, and 3) the electrical contact formed mimics the properties of top contacts but with the spatial resolution of bottom contacts. Transparent, conducting films of carbon nanotubes (CNTs) are prepared by airbrushing, and characterized optically and electronically. OFETs with CNT films as source and drain electrodes are fabricated using various patterning techniques, and the organic/CNT contact resistance is characterized. CNT films make transparent, flexible electrodes with contact resistance comparable to that found for Au bottom-contacted P3HT transistors and comparable to CNT-film bottom-contacted pentacene transistors with CNTs deposited by other less flexible methods. A transparent OFET is demonstrated using transfer printing for the assembly of an organic semiconductor (pentacene), CNT film source, drain, and gate electrodes, and polymer gate dielectric and substrate. The dependence of the conductance and mobility in pentacene OFETs on temperature, gate voltage, and source-drain electric field is studied. The data are analyzed by extending a multiple trapping and release model to account for lowering of the energy required to excite carriers into the valence band (Poole-Frenkel effect). The temperature-dependent conductivity shows activated behavior, and the activation energy is lowered roughly linearly with the square-root of electric field, as expected for the Poole-Frenkel effect. The gate voltage dependence of the activation energy is used to extract the trap density of states, in good agreement with other measurements in the literature.Item Electronic transport in low dimensions: carbon nanotubes and mesoscopic silver wires(2008-12-08) Ghanem, Tarek Khairy; Fuhrer, Michael S.; Williams, Ellen D.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This thesis explores the physics of low-dimensional electronic conductors using two materials systems, carbon nanotubes (CNTs) and lithographically-defined silver nanowires. In order to understand the intrinsic electronic properties of CNTs, it is important to eliminate the contact effects from the measurements. Here, this is accomplished by using a conductive-tip atomic force microscope cantilever as a local electrode in order to obtain length dependent transport properties. The CNT-movable electrode contact is fully characterized, and is largely independent of voltage bias conditions, and independent of the contact force beyond a certain threshold. The contact is affected by the fine positioning of the cantilever relative to the CNT due to parasitic lateral motion of the cantilever during the loading cycle, which, if not controlled, can lead to non-monotonic behavior of contact resistance vs. force. Length dependent transport measurements are reported for several metallic and semiconducting CNTs. The resistance versus length R(L) of semiconducting CNTs is linear in the on state. For the depleted state R(L) is linear for long channel lengths, but non-linear for short channel lengths due to the long depletion lengths in one-dimensional semiconductors. Transport remains diffusive under all depletion conditions, due to both low disorder and high temperature. The study of quantum corrections to classical conductivity in mesoscopic conductors is an essential tool for understanding phase coherence in these systems. A long standing discrepancy between theory and experiment regards the phase coherence time, which is expected theoretically to grow as a power law at low temperatures, but is experimentally found to saturate. The origins of this saturation have been debated for the last decade, with the main contenders being intrinsic decoherence by zero-point fluctuations of the electrons, and decoherence by dilute magnetic impurities. Here, the phase coherence time in quasi-one-dimensional silver wires is measured. The phase coherence times obtained from the weak localization correction to the conductivity at low magnetic field show saturation, while those obtained from universal conductance fluctuations at high field do not. This indicates that, for these samples, the origin of phase coherence time saturation obtained from weak localization is extrinsic, due to the presence of dilute magnetic impurities.Item Structure and Properties of Nanocomposites Containing Anisotropic Nanoparticles(2007-10-08) Cipriano, Bani Hans; Raghavan, Srinivasa R; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation deals with polymeric materials containing dispersed anisotropic nanoparticles such as nanotubes, nanofibers, and nanoplatelets. Such polymer nanocomposites have attracted much attention since they exhibit a host of superior properties over the parent polymer. For example, nanoparticles can impart flame-retardancy, high electrical conductivities, and high mechanical stiffness to the polymer. Despite the growing interest in these materials, many aspects remain poorly characterized, and the connection between properties and microstructure is still not fully understood. This provides the motivation for the present study. In the first part of this study, we focus on the flammability behavior of polymer nanocomposites containing multi-walled carbon nanotubes (MWNTs). It has been shown that MWNTs impart flame-retardancy to the polymer at low loadings, and moreover, the flame-retardancy correlates with the rheological properties of the nanocomposite. Here, we show that the aspect ratio of MWNTs is a key parameter in controlling both the rheology and flammability. Particles with a larger aspect ratio impart much higher storage moduli and complex viscosities to the nanocomposites compared to equivalent mass loadings of particles with a smaller aspect ratio. Additionally, in flammability experiments, the larger-aspect-ratio particles lead to a greater reduction in mass loss rate, i.e., they are more effective at reducing flammability. In the second part of this study, we focus on the conductivity of nanocomposites containing particles such as MWNTs or carbon nanofibers (CNFs). When these materials are processed by compression molding or melt extrusion, the conductivities of the resulting composites are often found to be disappointingly low. Here, we show that the conductivities can be increased, sometimes by orders of magnitude, simply by subjecting the sample to quiescent annealing at temperatures above the polymer's glass transition temperature (Tg). We demonstrate these results for both MWNT and CNF-based composites in polystyrene (PS). The mechanism behind the conductivity increase is shown to involve an increase in the connectivity of the particle network, which is reflected in dynamic rheological measurements as an increase in the plateau modulus at low frequencies. In the final part of this study, we present a simple method to improve the rheology and flammability properties of nanocomposites formed from polymers and clay platelets. These materials are usually made by combining a polymer with a commercial organoclay powder. We show that by fractionating the clay to exclude low-aspect ratio particles and aggregates, we can improve their dispersion (exfoliation) in the polymer. The resulting composites have higher optical transparency and better rheological properties for a given mass loading of clay. When these composites are subjected to a flame, we find a more uniform residue when compared to samples with the commercial organoclay. The fractionated clay also shows an interesting behavior when dispersed in water, where it forms birefringent gels at high particle loadings.Item Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications(2007-04-30) Parthangal, Prahalad Madhavan; Zachariah, Michael R; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same material. Essentially, we have formulated simple processes for improving current thin film sensors as well as a means of incorporating nanostructures directly into miniature sensing devices. Apart from gas sensing applications, the approaches described in this work are suitable for designing future nanoelectronic devices such as gas-ionization, capacitive and calorimetric sensors, miniature sensor arrays for electronic nose applications, field emitters, as well as photonic devices such as nanoscale LEDs and lasers.