Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    SIMULATION OF MAGNETIC GRANULAR MEDIA USING OPEN SOURCE SOFT SPHERE DISCRETE ELEMENT METHOD
    (2021) Leps, Thomas; Christine, Hartzell; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Magnetic granular media were investigated using a mutual dipole magnetic model integrated into the open source Soft Sphere Discrete Element Method (DEM) framework LAMMPS and LIGGGHTS. Using the magnetic model and the contact force models from LIGGGHTS, we simulated shear behavior of MagnetoRheological Fluids (MRF). We found that the size distribution of simulated particles significantly affects the qualitative and quantitative behavior of MRF in a simple shear cell. Additionally, including cohesion, rolling resistance, friction and other contact forces affect the simulated shear behavior. By using a high fidelity contact force model along with an accurate size distribution and the mutual dipole magnetic model we were able to accurately match experimental data for an example MRF.We used the DEM model to aid in the development of a novel MRF valve operating on an alternative MRF behavior. Our jamming, MRF valve holds pres- sure through stable, but reversible jamming in the flow path, and is actuated by electropermanent magnets, which require no quiescent current to maintain their magnetization states. These valves do not require the large power draw of con- ventional MRF valves to maintain their state. We were able to accurately predict the experimental jamming behavior of the MRF valve using Finite Element Analysis and LIGGGHTS with magnetization, further validating the model with a non-linear, non-continuum behavior. Our jamming MRF valve was demonstrated in a multi- segmented, elastomeric robot, actuated using MRF. Using the magnetic DEM model coupled with self-gravity, the effects of mag- netism on rubble pile magnetic asteroids were examined. We simulated formation, and disruption of metallic asteroids with remnant magnetizations using LAMMPS with permanent dipoles. We found that rubble pile asteroids, formed from clouds of magnetized grains, coalesce more quickly, and have higher porosities than aster- oids coalesced from unmagnetized grains. Distortion and disruption was affected by magnetization during simulated YORP spin-up. Large fragments with high aspect ratios and low densities were formed from highly magnetized asteroids after disrup- tion, matching the shapes of suspected metallic small bodies. Simulations of grain avalanching on the surface of magnetized asteroids found additional morphological differences from their unmagnetized counterparts, with reduced densities, increased angles of repose, and cornicing.
  • Thumbnail Image
    Item
    THE EFFECTS OF UNMITIGATED IDLE TIME ON THE PERFORMANCE OF MAGNETORHEOLOGICAL DAMPERS AS A STRUCTURAL PROTECTIVE SYSTEM.
    (2018) Khan, Sami Ur-Rahman; Phillips, Brian; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis discusses the long-term performance degradation of seismic protective systems due to age and inactivity (termed “idle time effects”). Over the lifetime of a structures there is the potential for a significant reduction in ability for the structural control systems to mitigate earthquakes. This can affect the resilience of the structure and lead to uncertainty in engineering judgement when designing seismic protective systems. Further research into these idle time effects could help to create solutions to mitigate age-dependent performance loss. This paper will use magneto-rheological (MR) dampers, which serve as a good analog for other semi-active control devices, to study idle time effects on seismic protection. MR dampers provide controllable damping through the magnetization of small MR particles in a carrier fluid. These particles can settle over time, influencing their performance. Using a model MR fluid, accelerated testing was performed to analyze the consequences of idle time.
  • Thumbnail Image
    Item
    ACTIVE VIBRATION ATTENUATING SEAT SUSPENSION FOR AN ARMORED HELICOPTER CREW SEAT
    (2013) Sztein, Pablo Javier; Wereley, Norman M; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    An Active Vibration Attenuating Seat Suspension (AVASS) for an MH-60S helicopter crew seat is designed to protect the occupants from harmful whole-body vibration (WBV). Magnetorheological (MR) suspension units are designed, fabricated and installed in a helicopter crew seat. These MR isolators are built to work in series with existing Variable Load Energy Absorbers (VLEAs), have minimal increase in weight, and maintain crashworthiness for the seat system. Refinements are discussed, based on testing, to minimize friction observed in the system. These refinements include the addition of roller bearings to replace friction bearings in the existing seat. Additionally, semi-active control of the MR dampers is achieved using special purpose built custom electronics integrated into the seat system. Experimental testing shows that an MH-60S retrofitted with AVASS provides up to 70.65% more vibration attenuation than the existing seat configuration as well as up to 81.1% reduction in vibration from the floor.
  • Thumbnail Image
    Item
    Adaptive Magnetorheological Sliding Seat System for Ground Vehicles
    (2011) Mao, Min; Wereley, Norman M.; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Magnetorheological (MR) fluids (MRFs) are smart fluids that have reversible field dependent rheological properties that can change rapidly (typically 5 - 10 ms time constant). Such an MRF can be changed from a free flowing fluid into a semi-solid when exposed to a magnetic field. The rapid, reversible, and continuous field dependent variation in rheological properties can be exploited in an MRF-based damper or energy absorber to provide adaptive vibration and shock mitigation capabilities to varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. Electronically controlled electromagnetic coils are typically used to activate the MR effect and tune the damping force so that feedback control implementation is practical and realizable. MR devices have been demonstrated as successful solutions in semi-active systems combining advantages of both passive and active systems for applications where piston velocities are relatively low (typically < 1 m/s), such as seismic mitigation, or vibration isolation. Recently strong interests have focused on employing magnetorheological energy absorbers (MREAs) for high speed impact loads, such as in helicopter cockpit seats for occupant protection in a vertical crash landing. This work presents another novel application of MREAs in this new trend - an adaptive magnetorheological sliding seat (AMSS) system utilizing controllable MREAs to mitigate impact load imparted to the occupant for a ground vehicle in the event of a low speed frontal impact (up to 15 mph). To accomplish this, a non-linear analytical MREA model based on the Bingham-plastic model and including minor loss effects (denoted as the BPM model) is developed. A design strategy is proposed for MREAs under impact conditions. Using the BPM model, an MREA is designed, fabricated and drop tested up to piston velocities of 5 m/s. The measured data is used to validate the BPM model and the design strategy. The MREA design is then modified for use in the AMSS system and a prototype is built. The prototype MREA is drop tested and its performance, as well as the dynamic behavior in the time domain, is described by the BPM model. Next, theoretical analysis of the AMSS system with two proposed control algorithms is carried out using two modeling approaches: (1) a single-degree-of-freedom (SDOF) rigid occupant (RO) model treating the seat and the occupant as a single rigid mass, and (2) a multi-degree-of-freedom (MDOF) compliant occupant (CO) model interpreting the occupant as three lumped parts - head, torso and pelvis. A general MREA is assumed and characterized by the Bingham-plastic model in the system model. The two control algorithms, named the constant Bingham number or Bic control and the constant stroking force or Fc control, are constructed in such a way that the control objective - to bring the payload to rest while fully utilizing the available stroke - is achieved. Numerical simulations for both rigid and compliant occupant models with assumed system parameter values and a 20 g rectangular crash pulse for initial impact speeds of up to 7 m/s (15.7 mph) show that overall decelerations of the payload are significantly reduced using the AMSS compared to the case of a traditional fixed seat. To experimentally verify the theoretical analysis, a prototype AMSS system is built. The prototype seat system is sled tested in the passive mode (i.e. without control) for initial impact speeds of up to 5.6 m/s and for the 5th percentile female and the 95th percentile male. Using the test data, the CO model is shown to be able to adequately describe the dynamic behavior of the prototype seat system. Utilizing the CO model, the control algorithms for the prototype seat system are developed and a prototype controller is formulated using the DSPACE and SIMULINK real time control environments. The prototype seat system with controller integrated is sled tested for initial impact speeds of up to 5.6 m/s for the 5th female and 95th male (only the 95th male is tested for the Bic control). The results show that the controllers of both control algorithms successfully bring the seat to rest while fully utilizing the available stroke and the decelerations measured at the seat are substantially mitigated. The CO model is shown to be effective and a useful tool to predict the control inputs of the control algorithms. Thus, the feasibility and effectiveness of the proposed adaptive sliding seat system is theoretically and experimentally verified.