Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    A MODEL TO PREDICT THE SIZE OF 3D REGOLITH CLUMPS ON PLANETARY BODIES
    (2020) Patel, Anand Vijaykumar; Hartzell, Christine M; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Prior investigations of the behavior of regolith on the surface of planetary bodies has considered the motion and interactions of individual grains. Recent work has shown the significance of cohesion in understanding the behavior of planetary regolith, especially on small, airless bodies. Surficial regolith grains may detach from a planetary body due to a variety of phenomena, including aeolian effects, spacecraft operations, micrometeoroid bombardment and electrostatic lofting. It is well known in terrestrial powder handling that cohesive powders tend to form clumps. We present an analytical theory for the size of regolith clumps that are likely to form and be easier to detach from a surface than their constituent grains, assuming monodisperse, spherical grains. The model predictions are significant for our interpretation of the surface of asteroids, as well as understanding a variety of phenomena on planetary bodies and designing of sampling spacecraft.
  • Thumbnail Image
    Item
    Probing the Multiphase Interstellar Medium and Star Formation in Nearby Galaxies through Far-infrared Spectroscopy
    (2015) Herrera Camus, Rodrigo; Bolatto, Alberto; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We present a study of different aspects of the multi-phase interstellar medium (ISM) of nearby galaxies, including detailed analysis of the low-excitation ionized gas, the thermal pressure (Pth) of the neutral gas, the dust-to-gas mass ratio (DGR) in low-metallicity environments, and the use of far-infrared transitions as tracers of the star formation rate (SFR). We based our work on the largest sample to date of spatially-resolved, infrared observations of nearby galaxies drawn from the KINGFISH and ``Beyond the Peak'' surveys. We use deep infrared observations to study the DGR of the extremely metal-poor galaxy I Zw 18. We measure a DGR upper-limit of 8.1x10^{-5}. This value is a factor of ~8 lower than the expected DGR if a linear correlation between DGR and metallicity, as observed in spirals, were to hold. Based on the line ratio between the [NII] 122 and 205 um transitions, for 140 regions selected from 21 galaxies we measure electron densities of the singly-ionized gas in the ne~1-230 cm^{-3} range, with a median value of ne=30 cm^{-3}. We find that ne increases as a function of SFR and radiation field strength. We study the reliability of the [CII] and [NII] 122 and 205 um transitions as SFR tracers. In general, we find good correlations between the emission from these fine-structure lines and star formation activity. However, a decrease in the photoelectric heating efficiency in the case of the [CII] line, or collisional quenching of the [NII] lines, can cause calibrations based on these transitions to underestimate the SFR. Finally, for a sample of atomic-dominated regions selected from 31 galaxies, we use the [CII] and HI lines to measure the cooling rate per H atom and Pth of the cold, neutral gas. We find a \pt\ distribution that can be well described by a log-normal distribution with median Pth/k~5,500 K cm^{-3}. We find correlations of increasing Pth with radiation field intensity and SFR, which is consistent with the results from two-phase ISM models in pressure equilibrium.
  • Thumbnail Image
    Item
    IMPACT OF DUST ON THE RELIABILITY OF PRINTED CIRCUIT ASSEMBLIES
    (2013) Song, Bo; Pecht, Michael G; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Dust is a ubiquitous component of the environments in which we live and work. It can deposit on printed circuit assembly to act as a source of ionic contamination. Two common consequences of dust contaminations in the printed circuit boards are loss of impedance (i.e., loss of surface insulation resistance) and electrochemical migration between traces and component leads. Both failure mechanisms involve the contamination forming a current leakage path on a printed circuit board. Based on studies on ionic contaminations, researchers have argued that the impact of dust in these two failure mechanisms is dependent on its pH, its hygroscopic compositions, and the critical relative humidity of the salts in it. However, due to the lack of experimental results and the complexity of dust compositions, the argument is not substantiated. Very few papers concerning the impact of different natural dusts on these two failure mechanisms can be found in the literature. In practice, mixtures of Arizona dust and salts are used as a substitute for dust in experiments. In this research, natural dusts were collected from four locations: natural outdoor and indoor dust samples from Massachusetts, U.S., natural outdoor dust from Tianjin, China, and the ISO standard test dust (Arizona test dust). Loss of impedance in dust contaminated printed circuit boards was investigated under controlled temperature (20ºC to 60ºC) and relative humidity (50% to 95%) ranges. The impact of dust on electrochemical migration and corrosion was evaluated under temperature-humidity-bias tests (50ºC, 90% RH, and 10 VDC). In addition to the conventional DC measurement where only resistive data can be obtained, electrochemical impedance spectroscopy were adopted to obtain nonlinear equivalent circuit models of the electrochemical process, which helps to understand the underlying physics-of-failure. The variation of impedance with relative humidity exhibited a transition range. Below the range, the impedance was constant, and above it, the impedance degraded by orders of magnitude. The value of the transition range decreased with an increase of dust deposition density. The equivalent circuit modeling showed that the dominant resistive path gradually shifted from the bulk to the interfacial with the increase of temperature from 20 ºC to 60 ºC. There were big variations among different dusts, which were quantified using the degradation factor introduced in the research, the critical transition range, and time-to-failure. This result demonstrated that a single salt or a mixture of compounds can not be representative of all dusts. It also indicated that using the ISO standard test dust in place of natural dust samples for reliability evaluation could lead to inaccurate results. Dust should be collected from the field in order to evaluate its impact. It is showed in this thesis that some critical characteristics of dust can be used to classify different dusts for the failure mechanisms of interest. Moisture sorption capability of dust can be used to classify different dusts regarding the loss of impedance failure. The dust with the highest moisture sorption capability had the highest degradation factor. Ion species/concentration or conductivity of dust aqueous solution can be used to classify dust regarding the electrochemical migration related failures. Dust with the highest ion concentration and conductivity had the lowest time-to-failure. The underlying principals behind those critical characteristics were described and discussed based on the physics-of-failure.
  • Thumbnail Image
    Item
    Magnetic Field Effects on the Motion of Circumplanetary Dust
    (2012) Jontof-Hutter, Daniel; Hamilton, Douglas P; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Hypervelocity impacts on satellites or ring particles replenish circumplanetary dusty rings with grains of all sizes. Due to interactions with the plasma environment and sunlight, these grains become electrically charged. We study the motion of charged dust grains launched at the Kepler orbital speed, under the combined effects of gravity and the electromagnetic force. We conduct numerical simulations of dust grain trajectories, covering a broad range of launch distances from the planetary surface to beyond synchronous orbit, and the full range of charge-to-mass ratios from ions to rocks, with both positive and negative electric potentials. Initially, we assume that dust grains have a constant electric potential, and, treating the spinning planetary magnetic field as an aligned and centered dipole, we map regions of radial instability (positive grains only), where dust grains are driven to escape or collide with the planet at high speed, and vertical instability (both positive and negative charges) whereby grains launched near the equatorial plane and are forced up magnetic field lines to high latitudes, where they may collide with the planet. We derive analytical criteria for local stability in the equatorial plane, and solve for the boundaries between all unstable and stable outcomes. Comparing our analytical solutions to our numerical simulations, we develop an extensive model for the radial, vertical and azimuthal motions of dust grains of arbitrary size and launch location. We test these solutions at Jupiter and Saturn, both of whose magnetic fields are reasonably well represented by aligned dipoles, as well as at the Earth, whose magnetic field is close to an anti-aligned dipole. We then evaluate the robustness of our stability boundaries to more general conditions. Firstly, we examine the effects of non-zero launch speeds, of up to 0.5 km s$^{-1}$, in the frame of the parent body. Although these only weakly affect stability boundaries, we find that the influence of a launch impulse on stability boundaries strongly depends on its direction. Secondly, we focus on the effects of higher-order magnetic field components on orbital stability. We find that vertical stability boundaries are particularly sensitive to a moderate vertical offset in an aligned dipolar magnetic field. This configuration suffices as a model for Saturn's full magnetic field. The vertical instability also expands to cover a wider range of launch distances in slightly tilted magnetic dipoles, like the magnetic field configurations for Earth and Jupiter. By contrast, our radial stability criteria remain largely unaffected by both dipolar tilts and vertical offsets. Nevertheless, a tilted dipole magnetic field model introduces non-axisymmetric forces on orbiting dust grains, which are exacerbated by the inclusion of other higher-order magnetic field components, including the quadrupolar and octupolar terms. Dust grains whose orbital periods are commensurate with the spatial periodicities of a rotating non-axisymmetric magnetic field experience destabilizing Lorentz resonances. These have been studied by other authors for the largest dust grains moving on perturbed Keplerian ellipses. With Jupiter's full magnetic field as our model, we extend the concept of Lorentz resonances to smaller dust grains and find that these can destabilize trajectories on surprisingly short timescales, and even cause negatively-charged dust grains to escape within weeks. We provide detailed numerically-derived stability maps highlighting the destabilizing effects of specific higher-order terms in Jupiter's magnetic field, and we develop analytical solutions for the radial locations of these resonances for all charge-to-mass ratios. We include stability maps for the full magnetic field configurations of Jupiter, Saturn, and Earth, to compare with our analytics. We further provide numerically-derived stability maps for the tortured magnetic fields of Uranus and Neptune. Relaxing the assumption of constant electric charges on dust, we test the effects of time-variable grain charging on dust grain motion in two distinct environments. Firstly, we examine orbital stability in the tenuous plasma of Jupiter's main ring and gossamer ring where sunlight, the dominant source of grain charging, is periodically interrupted by transit through the planetary shadow. This dramatically expands dynamical instabilities to cover a large range of grain sizes. Secondly, we study the motion of dust grain orbits in the dense plasma environment of the Io torus. Here dust grain charges deviate little from equilibrium, and our stability map conforms closely to that of constant, negatively-charged dust grains. Finally, we focus on the poorly understood spokes in Saturn's B ring, highlighting the observational constraints on spokes, and present our hypothesis for spoke formation.
  • Thumbnail Image
    Item
    Simulated Dust Aerosol Lifecycle in the NASA GEOS-5 Atmospheric Transport Model and Sensitivity to Source and Sink Mechanisms
    (2011) Nowottnick, Edward Paul; Li, Zhanqing; Colarco, Peter R; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Understanding interactions of mineral dust aerosols with the Earth system remains a key uncertainty in assessing global climate change. A significant portion of this uncertainty arises due to an incomplete understanding of the source, transport, and loss processes that control the dust aerosol lifecycle. Global aerosol transport models compliment traditional observational platforms to serve as useful tools for exploring aerosol-Earth system interactions. However, global models are limited by scale, requiring parameterizations to represent the lifecycle of dust. Here, the simulated dust lifecycle is explored in versions 4 and 5 of the NASA Goddard Earth Observing System (GEOS-4/5) model. Different treatments of the mobilizing physics are first explored by considering two mobilization schemes in GEOS-4. Both schemes produced similar distributions of aerosol optical thickness (AOT) and extinction that become more comparable with observations downwind of the source region. Despite similarities in the optical comparisons, the schemes differ in mass loadings owing to differences in emitted particle size distributions, suggesting that emission scheme choice is significant for mass budgets and particle size distributions. The effect of spatial resolution on source processes was investigated in GEOS-5. Model spatial resolution had a significant impact on simulated dust distributions, as increased model spatial resolution resolves higher wind speeds used to parameterize dust emissions. Model spatial resolution had regional implications, as simulated dust distribution exhibited the greatest sensitivity over the Asian source region. The incorporation of sub-grid wind variability in a coarse resolution simulation led to improved agreement with observed AOT magnitude, but did not improve the timing of simulated dust events over the Asian source region.GEOS-5 was used to investigate the cause of an observed barrier to dust transport across Central America into the Pacific. The baseline simulation did not develop as strong of a barrier when compared to observations. Better agreement was obtained when the parameterization for wet removal was treated as other hydrophilic aerosols. Analysis of the dust transport dynamics and loss processes suggest that while both mechanisms play a role in defining the barrier, loss processes by wet removal are about twice as important as transport.
  • Thumbnail Image
    Item
    Dust Structure and Composition Within Molecular Clouds and Cores
    (2007-10-02) Chapman, Nicholas; Mundy, Lee; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We observed three molecular clouds and four isolated cores at wavelengths from 3.6-24 microns. The clouds we observed were Ophiuchus, Perseus, and Serpens and the cores were L204C-2, L1152, L1155C-2, and L1228. Our goal was to use these deep infrared data to map changes in the extinction law and the dust properties throughout the observed regions. In our clouds, we found the lowest density regions have an IRAC extinction law similar to the one observed in the diffuse ISM. At higher extinctions, there is evidence for grain growth because the extinction law flattens compared to the diffuse ISM law and becomes more consistent with a model utilizing larger dust grains. In the densest regions of Serpens and Perseus, Ak > 2, it appears icy mantles are forming on the dust grains. We detected one low extinction region in Perseus with an anomalous extinction law that is not explained by current ideas about grain growth or the formation of ices onto dust grains. The extinction law in the cores shows only a slight flattening of the extinction law with increased extinction. Even at the lowest extinctions, the extinction law is more consistent with a dust model containing grain growth, rather than with the diffuse ISM. Two of the four cores have evidence for ices forming the densest regions. Molecular outflows appear to have an impact on the dust grains in two of our cores: L1152 and L1228. In both our clouds and cores, the extinction law at 24 microns is almost always higher than the value predicted by current dust models, but is consistent with other observations. We find some evidence for the 24 micron extinction law decreasing as the extinction increases. Overall, there are relatively few stars with detections >3 sigma at 24 microns. More observations are needed to understand the nature of the extinction law at this wavelength.