Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    Experiments with laser cooling and cold spinor gases
    (2022) Anderson, Madison J.; Campbell, Gretchen K.; Lobb, Christopher D.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis is the result of work on two separate Bose-Einstein condensate (BEC) experiments. First, I describe several projects in the construction of an ultracold Er and Na mixture experiment (Er:Na experiment). These include the design and characterization of a high temperature induction oven for Er as well as the capture of Er atoms into a 2D magneto-optical trap (2D MOT). Together, the induction oven and 2D MOT constitute a novel, compact source of cold Er atoms. Additionally, the construction and characterization of high current magnetic field coils for a magnetic quadrupole trap (MQT) and Helmholtz coils for future Feshbach spectroscopy are detailed.Second, I describe a series of experiments with spinor gases carried out on the JQI Na spinor apparatus. In the first experiment, I demonstrate the freezing of nonlinear spin mixing dynamics in a 23Na BEC using a microwave dressing. This technique can be used to preserve squeezing of a probe state in future metrological applications. The spinor phase of a frozen state evolves at an enhanced rate proportional an effective quadratic Zeeman shift, q, of the |F = 1, mF = 0⟩ energy level. In the second experiment, I demonstrate a radio frequency (rf) atomic spin-1 Ramsey interferometer which can measure the effective q, and thereby the spinor phase precession rate of a frozen probe state. The interferometer can simultaneously measure the rf detuning and q, and I demonstrate that it can be operated in both resonant and off-resonant regimes, using differential phase modulation between the two Ramsey pulses. The spin-1 Ramsey interferometer therefore has distinct advan- tages over both rf and microwave Rabi spectroscopy which are alternative methods to measure the effective q. Finally, I demonstrate theoretical grounds for spin squeezing in a cold spin-1 thermal gas. In particular, I derive a spin-1 Boltzmann transport equation for the Wigner phase space density operator without recourse to Hartree-Fock theory. I then apply three different theoretical paradigms to model an experimental observation of classical relative number squeezing in a cold spin-1 thermal gas of Na: a simplified undepleted pump model which I solved analytically, a semiclassical quasiprobability distribution (QPD) numerical method, and numerical solution of the Schro ̈dinger equation using Fock states.
  • Thumbnail Image
    Item
    ON THEORETICAL ANALYSES OF QUANTUM SYSTEMS: PHYSICS AND MACHINE LEARNING
    (2022) Guo, Shangjie; Spielman, Ian B; Taylor, Jacob M; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Engineered quantum systems can help us learn more about fundamental physics topics and quantum technologies with real-world applications. However, building them could involve several challenging tasks, such as designing more noise-resistant quantum components in confined space, manipulating continuously-measured quantum systems without destroying coherence, and extracting information about quantum phenomena using machine learning (ML) tools. In this dissertation, we present three examples from the three aspects of studying the dynamics and characteristics of various quantum systems. First, we examine a circuit quantum acoustodynamic system consisting of a superconducting qubit, an acoustical waveguide, and a transducer that nonlocally couples both. As the sound signals travel $10^5$ times slower than the light and the coupler dimension extends beyond a few phonon emission wavelengths, we can model the system as a non-Markovian giant atom. With an explicit result, we show that a giant atom can exhibit suppressed relaxation within a free space and an effective vacuum coupling emerges between the qubit excitation and a confined acoustical wave packet. Second, we study closed-loop controls for open quantum systems using weakly-monitored Bose-Einstein condensates (BECs) as a platform. We formulate an analytical model to describe the dynamics of backaction-limited weak measurements and temporal-spatially resolved feedback imprinting. Furthermore, we design a backaction-heating-prevention feedback protocol that stabilizes the system in quasi-equilibrium. With these results, we introduce closed-loop control as a powerful instrument for engineering open quantum systems. At last, we establish an automated framework consisting of ML and physics-informed models for solitonic feature identification from experimental BEC image data. We develop classification and object detection algorithms based on convolutional neural networks. Our framework eliminates human inspections and enables studying soliton dynamics from numerous images. Moreover, we publish a labeled dataset of soliton images and an open-source Python package for implementing our framework.
  • Thumbnail Image
    Item
    MAGNETIZED PLANE WAVE AND STRIPE-ORDERED PHASES IN SPIN-ORBIT-COUPLED BOSE GASES
    (2018) Putra, Andika; Rolston, Steven; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Quantum degenerate gases have provided rich systems to simulate engineered Hamiltonians and to explore quantum many-body problems in laboratory-scale experiments. In this work, I focus on spin-orbit-coupled (SOC) Bose-Einstein condensates (BECs) of Rubidium-87 atoms realized using two-photon Raman coupling in which various novel phases are predicted to exist due to competing energies from the atomic internal structure, coupling strength, and many-body collisions. BECs are observed primarily using the interaction between light and matter, where it is common to probe the atoms with near-resonant light and image their shadow on a camera. This absorption imaging technique measures the integrated column density of the atoms and it is crucial to focus the imaging system. I present a systematic method to bring the ultracold atom systems into an optimal focus using the power spectral density (PSD) of the atomic density-density correlation function. The spatial frequency at which the defocus-induced artifacts first appear in the PSD is maximized at the focus. The focusing process thus identifies the range of spatial frequencies over which the PSD is uncontaminated by finite-thickness effects. Next, I describe magnetic phases which exist in spin-1 spin-orbit-coupled condensates at a near-zero temperature. I observe ferromagnetic and unmagnetized phases which are stabilized by the locking between the spin and linear momentum of the system. Our measurements of both the first- and second-order transitions are in agreement with theory. Finally, I discuss the stripe-ordered phase that occurs in SOC Bose gases favoring the miscibility configuration. The stripe phase is theoretically predicted to have an excitation spectrum analogous to that of a supersolid and to exhibit spatial density modulation within specific regions of parameter space. I used optical Bragg scattering to probe the small density modulation present in the atomic spatial distribution. I present for the very first time observation of the stripe phase in a Raman SOC Bose gas and its phase diagram in various parameter space. Our observations of the phase boundaries are consistent with theory and previous work.
  • Thumbnail Image
    Item
    Dynamics of Topological Defects in Hybrid Quantum Systems
    (2017) Hurst, Hilary; Galitski, Victor M; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation focuses on dynamics and transport effects of semiclassical topological defects in systems with important quantum degrees of freedom, which we term "hybrid quantum systems". The topological defects under consideration are skyrmions and magnetic vortices in layered heterostructures of three-dimensional (3D) topological insulators (TI) and magnetic materials, and dark solitons in Bose-Einstein condensates (BEC). We examine the proximity effect between a 3D TI and two types of insulating magnets: a chiral magnet with a single skyrmion in a ferromagnetic background, and an XY magnet with strong easy-plane anisotropy which undergoes a vortex unbinding transition. The skyrmion magnetic texture leads to confinement of Dirac states at the skyrmion radius, resulting in a charged skyrmion that can be manipulated by an external electric field. We show that the bound states are robust in the presence of an external magnetic field. Magnetic vortices in the XY magnet affect electronic transport at the TI surface. Scattering at classical magnetic fluctuations influences surface resistivity of the TI, and near the transition temperature we find that the resistivity has a clear maximum and scales linearly with temperature on either side of the transition. We discuss the limits of mapping the TI-XY magnet model to the classic theoretical problem of free Dirac fermions in a random magnetic field. Secondly, we study dark solitons in a BEC coupled to thermal non-interacting impurity atoms acting as a dissipative bath. We calculate the friction coefficient due to scattering and find that it can be tuned with accessible experimental probes. We develop a general theory of stochastic dynamics of the negative-mass dark soliton and solve the corresponding Fokker-Planck equation exactly. From the time-dependent phase-space probability distribution function we find the soliton can undergo Brownian motion only in the presence of friction and a confining potential. Finally, we numerically study the ground-state properties of a spin-1 BEC gas in the "synthetic dimensions" experimental set-up. Ground state phases depend on the sign of the spin-dependent interaction parameter and the strength of the spin-orbit field. We find "charge"- and spin-density-wave phases related to helical spin order.
  • Thumbnail Image
    Item
    Pair creation and pair annihilation in Bose-Einstein condensates
    (2017) Wang, Yi-Hsieh; Clark, Charles W.; Jacobson, Theodore; Chemical Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis covers three applications of Bose-Einstein condensates and related phenomena, in the theme of pair creation and pair annihilation. First, Bose-Einstein condensates (BEC) are viewed as one of the candidates to implement a sonic black hole. This can lead to the observation of analog Hawking radiation, resulting from a phonon pair creation at a black-hole horizon (BH). Such implementation has been achieved in a resent experiment by J. Steinhauer, in which a black-hole/white-hole pair has been produced. He also reported the observations of self-amplifying Hawking radiation, via a lasing mechanism operating between the black and white-hole horizons. Through our simulations, we find that the observations should be attributed not to the black hole laser effect, but rather to a growing zero-frequency bow wave, generated at the white-hole horizon. The relative motion of the two horizons produces a Doppler shift of the bow wave at the BH, where it stimulates a monochromatic Hawking radiation. We also find that shot-to-shot atom number variations and quantum fluctuations give density-density correlations consistent with those reported in the experiments. In particular, atom number variations can produce a spurious correlation signal. Secondly, a sonic black hole/white hole pair and phonon pair creation can also be realized using a ring-shaped condensate. Here we focus on the phonon spectroscopy of a ring condensate. We probe the phonon excitation spectrum by applying a harmonically driven barrier to a 23Na Bose-Einstein condensate in a ring-shaped trap. When excited resonantly, these wavepackets display a regular periodic structure. The resonant frequencies depend upon the particular configuration of the barrier, but are commensurate with the orbital frequency of a sound wave traveling around the ring. Energy transfer to the condensate over many cycles of the periodic wavepacket motion causes enhanced atom loss from the trap at resonant frequencies. Solutions of the Gross-Pitaevskii (GP) equation exhibit quantitative agreement with the experimental data. Thirdly, positronium (Ps) BECs have been of experimental and theoretical interest due to their potential application as the gain medium of a gamma-ray laser. Ps BECs are intrinsically spinor due to the presence of ortho- (o-Ps) and para-positronium (p-Ps), whose annihilation lifetimes differ by three orders of magnitude. We study the spinor dynamics and annihilation processes in the p-Ps/o-Ps system using both solutions of the GP equations and a rate-equation approach. For an initially unpolarized condensate, there is a threshold density at which spin mixing between o-Ps and p-Ps occurs. Beyond this threshold, there are unstable spatial modes accompanied by spin mixing. To ensure a high production yield above the critical density, a careful choice of external field must be made to avoid the spin mixing instability.
  • Thumbnail Image
    Item
    PARTIAL-TRANSFER ABSORPTION IMAGING OF 87Rb BOSE-EINSTEIN CONDENSATES
    (2016) Marshall, Erin; Spielman, Ian B; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We present the design, testing, and implementation of a minimally-destructive, partial- transfer absorption imaging system. Partial-transfer absorption imaging in 87Rb utilizes a microwave transition to transfer a fraction of the atoms in a Bose-Einstein condensate (BEC) prepared in the F = 1 hyperfine state into the F = 2 hyperfine state, where they can be imaged on a cycling transition. The F = 1 and F = 2 hyperfine states are far apart enough in frequency that the F = 1 BEC is essentially unaffected by the imaging probe beam. The modulation transfer function, spot diagram, and point spread function for the imaging optics are simulated and measured on a bench model. We demonstrate the use of the imaging system, and we characterize the atom number and decay rate in a series of images of a repeatedly imaged BEC as a function of one of the imaging parameters, the microwave pulse time.
  • Thumbnail Image
    Item
    Degenerate mixtures of rubidium and ytterbium for engineering open quantum systems
    (2015) Vaidya, Varun Dilip; Porto, James V; Rolston, Steven L; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In the last two decades, experimental progress in controlling cold atoms and ions now allows us to manipulate fragile quantum systems with an unprecedented degree of precision. This has been made possible by the ability to isolate small ensembles of atoms and ions from noisy environments, creating truly closed quantum systems which decouple from dissipative channels. However in recent years, several proposals have considered the possibility of harnessing dissipation in open systems, not only to cool degenerate gases to currently unattainable temperatures, but also to engineer a variety of interesting many-body states. This thesis will describe progress made towards building a degenerate gas apparatus that will soon be capable of realizing these proposals. An ultracold gas of ytterbium atoms, trapped by a species-selective lattice will be immersed into a Bose-Einstein condensate (BEC) of rubidium atoms which will act as a bath. Here we describe the challenges encountered in making a degenerate mixture of rubidium and ytterbium atoms and present two experiments performed on the path to creating a controllable open quantum system. The first experiment will describe the measurement of a tune-out wavelength where the light shift of $\Rb{87}$ vanishes. This wavelength was used to create a species-selective trap for ytterbium atoms. Furthermore, the measurement of this wavelength allowed us to extract the dipole matrix element of the $5s \rightarrow 6p$ transition in $\Rb{87}$ with an extraordinary degree of precision. Our method to extract matrix elements has found use in atomic clocks where precise knowledge of transition strengths is necessary to account for minute blackbody radiation shifts. The second experiment will present the first realization of a degenerate Bose-Fermi mixture of rubidium and ytterbium atoms. Using a three-color optical dipole trap (ODT), we were able to create a highly-tunable, species-selective potential for rubidium and ytterbium atoms which allowed us to use $\Rb{87}$ to sympathetically cool $\Yb{171}$ to degeneracy with minimal loss. This mixture is the first milestone creating the lattice-bath system and will soon be used to implement novel cooling schemes and explore the rich physics of dissipation.
  • Thumbnail Image
    Item
    A Ring with a Spin : Superfluidity in a toroidal Bose-Einstein condensate
    (2011) Ramanathan, Anand Krishnan; Rolston, Steve L; Chemical Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Superfluidity is a remarkable phenomenon. Superfluidity was initially characterized by flow without friction, first seen in liquid helium in 1938, and has been studied extensively since. Superfluidity is believed to be related to, but not identical to Bose-Einstein condensation, a statistical mechanical phenomena predicted by Albert Einstein in 1924 based on the statistics of Satyendra Nath Bose, where bosonic atoms make a phase transition to form a Bose-Einstein condensate (BEC), a gas which has macroscopic occupation of a single quantum state. Developments in laser cooling of neutral atoms and the subsequent realization of Bose-Einstein condensates in ultracold gases have opened a new window into the study of superfluidity and its relation to Bose-Einstein condensation. In our atomic sodium BEC experiment, we studied superfluidity and dissipationless flow in an all-optical toroidal trap, constructed using the combination of a horizontal ``sheet''-like beam and vertical ``ring''-like beam, which, like a circuit loop, allows flow around the ring. On inducing a single quantum of circulation in the condensate, the smoothness and uniformity of the toroidal BEC enabled the sustaining of a persistent current lasting 40 seconds, limited by the lifetime of the BEC due to background gas pressure. This success set the stage for further experiments studying superfluidity. In a first set of experiments, we studied the stability of the persistent current by inserting a barrier in the flow path of the ring. The superflow stopped abruptly at a barrier strength such that the local flow velocity at the barrier exceeded a critical velocity, which supported decay via the creation of a vortex-antivortex pair. Our precise control in inducing and arresting superflow in the BEC is a first step toward studying other aspects of superfluidity, such as the effect of temperature and dimensionality. This thesis discusses these experiments and also details partial-transfer absorption imaging, an imaging technique developed in the course of this work.