Experiments with laser cooling and cold spinor gases

Loading...
Thumbnail Image

Publication or External Link

Date

Advisor

Campbell, Gretchen K.
Lobb, Christopher D.

Citation

Abstract

This thesis is the result of work on two separate Bose-Einstein condensate (BEC) experiments. First, I describe several projects in the construction of an ultracold Er and Na mixture experiment (Er:Na experiment). These include the design and characterization of a high temperature induction oven for Er as well as the capture of Er atoms into a 2D magneto-optical trap (2D MOT). Together, the induction oven and 2D MOT constitute a novel, compact source of cold Er atoms. Additionally, the construction and characterization of high current magnetic field coils for a magnetic quadrupole trap (MQT) and Helmholtz coils for future Feshbach spectroscopy are detailed.Second, I describe a series of experiments with spinor gases carried out on the JQI Na spinor apparatus. In the first experiment, I demonstrate the freezing of nonlinear spin mixing dynamics in a 23Na BEC using a microwave dressing. This technique can be used to preserve squeezing of a probe state in future metrological applications. The spinor phase of a frozen state evolves at an enhanced rate proportional an effective quadratic Zeeman shift, q, of the |F = 1, mF = 0⟩ energy level. In the second experiment, I demonstrate a radio frequency (rf) atomic spin-1 Ramsey interferometer which can measure the effective q, and thereby the spinor phase precession rate of a frozen probe state. The interferometer can simultaneously measure the rf detuning and q, and I demonstrate that it can be operated in both resonant and off-resonant regimes, using differential phase modulation between the two Ramsey pulses. The spin-1 Ramsey interferometer therefore has distinct advan- tages over both rf and microwave Rabi spectroscopy which are alternative methods to measure the effective q. Finally, I demonstrate theoretical grounds for spin squeezing in a cold spin-1 thermal gas. In particular, I derive a spin-1 Boltzmann transport equation for the Wigner phase space density operator without recourse to Hartree-Fock theory. I then apply three different theoretical paradigms to model an experimental observation of classical relative number squeezing in a cold spin-1 thermal gas of Na: a simplified undepleted pump model which I solved analytically, a semiclassical quasiprobability distribution (QPD) numerical method, and numerical solution of the Schro ̈dinger equation using Fock states.

Notes

Rights