Institute for Systems Research Technical Reports
Permanent URI for this collectionhttp://hdl.handle.net/1903/4376
This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.
Browse
Search Results
Item "Manufacturing-Operation Planning Versus AI Planning(1995) Nau, D.S.; Gupta, Sandeep K.; Regli, W.C.; ISRAlthough AI planning techniques can potentially be useful in several manufacturing domains, this potential remains largely unrealized. Many of the issues important to manufacturing engineers have not seemed interesting to AI researchers---but in order to adapt AI planning techniques to manufacturing, it is important to address these issues in a realistic and robust manner. Furthermore, by investigating these issues, AI researchers may be able to discover principles that, are relevant for AI planning in general.As an example, in this paper we describe the techniques for manufacturing-operation planning used in IMACS (Interactive Manufacturability Analysis and Critiquing System). We compare and contrast them with the techniques used in classical AI planning systems, and point out that some of the techniques used in IMACS may also be useful in other kinds of planning problems.
Item Feature Recognition for Manufacturability Analysis(1994) Regli, W.C.; Gupta, Satyandra K.; Nau, D.S.; ISRWhile automated recognition of features has been attempted for a wide range of applications, no single existing approach possesses the functionality required to perform manufacturability analysis. In this paper, we present a methodology for taking a CAD model and extracting a set of machinable features suitable for generating all alternative interpretations of the model as collections of MRSEVs (Material Removal Shape Element Volumes, a STEP-based library of machining, features). This set of MRSEVs is to be employed for manufacturability analysis. The algorithm handles a variety of features including those describing holes, pockets, slots, and chamfering and filleting operations. In addition, it considers elementary accessibility constraints for these features and is provably complete over a, significant class of machinable parts the features describe. Further, the approach has low-order polynomial-time worst-case complexity.Item A Systematic Approach for Analyzing the Manufacturability of Machined Parts(1993) Gupta, Satyandra K.; Nau, D.S.; ISRThe ability to quickly introduce new quality products is a decisive factor in capturing market share. Because of pressing demands to reduce lead time, analyzing the manufacturability of the proposed design has become an important step in the design stage. This paper presents an approach for analyzing the manufacturability of machined parts.Evaluating the manufacturability of a proposed design involves determining whether or not it is manufacturable with a given set of manufacturing operations - and if so, then finding the associated manufacturing efficiency. Since there can be several different ways to manufacture a proposed design, this requires us to consider different ways to manufacture it, in order to determine which one best meets the design and manufacturing objectives.
The first step in our approach is to identify all machining operations which can potentially be used to create the given design. Using these operations, we generate different operation plans for machining the part. Each time we generate a new operation plan, we examine whether it can produce the desired shape and tolerances, and calculate its manufacturability rating. If no operation plan can be found that is capable of producing the design, then the given design is considered unmachinable; otherwise, the manufacturability rating for the design is the rating of the best operation plan.
We anticipate that by providing feedback about possible problems with the design, this work will help in speeding up the evaluation of new product designs in order to decide how or whether to manufacture them. Such a capability will be useful in responding quickly to changing demands and opportunities in the marketplace.
Item Interpreting Product Designs for Manufacturability Evaluation(1993) Gupta, Satyandra K.; Nau, D.S.; Zhang, G.M.; ISRThe ability to quickly introduce new quality products is a decisive factor in capturing market share. Because of pressing demands to reduce lead time, analyzing the manufacturability of the proposed design has become an important step in the design stage. In this paper we present an approach for evaluating the manufacturability of machined parts.Evaluating manufacturability involves finding a way to manufacture the proposed design, and estimating the associated production cost and quality. However, there often can be several different ways to manufacture a proposed design - so to evaluate the manufacturability of the proposed design, we need to consider different ways to manufacture it, and determine which one best meets the manufacturing objectives.
In this paper we describe a methodology for systematically generating and evaluating alternative operation plans. As a first step, we identify all machining operations which can potentially be used to create the given design. Using these operations, we generate different operation plans for machining the part. Each time we generate a new operation plan, we assign it a manufacturability rating. The manufacturability rating for the design is the rating of the best operation plan.
We anticipate that by providing feedback about possible problems with the design, this work will be useful in providing a way to speed up the evaluation of new product designs in order to decide how or whether to manufacture them.
Item Estimation of Achievable Tolerances(1993) Gupta, Satyandra K.; Nau, D.S.; Zhang, G.M.; ISRThis report presents a new and systematic approach to assist decision-making in selecting machining operation plans. We present a methodology to estimate achievable tolerances of operations plan. Given an operation plan, we use variety of empirical and mathematical models to evaluate process capabilities of various machining operations and compute achievable tolerances using tolerance charting techniques.Item Generation of Alternative Feature-Based Models and Precedence Orderings for Machining Applications(1992) Gupta, Sandeep K.; Nau, D.S.; ISRFor machining purposes, a part is often considered to be a feature-based model (FBM), i.e., a collection of machining features. However, often there can be several different FBM's of the same part. These models correspond to different sets of machining operations, with different precedence constraints. Which of these sets of machining operations is best depends on several factors, including dimensions, tolerances, surface finishes, availability of machine tools and cutting tools, fixturability, and optimization criteria. Thus, these alternatives should be generated and evaluated.In this paper we present the following results: 1. We give general mathematical definitions of machining features and FBMs.
2. We present a systematic way to generate the alternative FBMs for a part, given an initial FBM for the part.
3. For each FBM, interactions among the features will impose precedence constraints on the possible orderings in which these features can be machined. We show how to generate these precedence constraints automatically for each interpretation.
4. We show how to organize the above precedence constraints into a time-order graph that represents all feasible orderings in which the features can be machined, and examine the time-order graph to see if it is consistent. If it is not consistent, then there is no way to machine this particular interpretation.
This work represents a step toward our overall approach of developing ways for automatically generating the alternative ways in which a part can be machined, and evaluating them to see how well they can do at creating the desired part. We anticipate that the information provided by this analysis will be useful both for process planning and concurrent design.
Item Generation and Evaluation of Alternative Operation(1992) Nau, D.S.; Zhang, G.M.; Gupta, Satyandra K.; ISRThis paper presents a new and systematic approach to assist decision-making in selecting machining operation sequences. The approach is to produce alternative interpretations of design as different collections of machinable features, use these interpretations to generate alternative machining operation sequences, and evaluate the cost and achievable machining accuracy of each operations sequence. Given the operation sequences and their evaluations, it is then possible to calculate the performance measures of interest, and use these performance measures to select, from among the various alternatives, one or more of them that can best balance the need for a quality product against the need for efficient machining.