Institute for Systems Research Technical Reports
Permanent URI for this collectionhttp://hdl.handle.net/1903/4376
This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.
Browse
Search Results
Item Averaging and Motion Control of Systems on Lie Groups(1994) Leonard, Naomi E.; Krishnaprasad, P.S.; ISRIn this dissertation, we study motion control problems in the framework of systems on finite-dimentional Lie groups. Nonholonomic motion control problems are challenging because nonlinear controllability theory does not provide an explicit procedure for constructing controls and linearization techniques, typically effective for nonlinear system analysis, fail to be useful. Our approach, distinguished from previous motion control research, is to exploit the Lie group framework since it provides a natural and mathematically rich setting for studying nonholonomic systems. In particular, we use the framework to develop explicit, structured formulas that describe system behavior and from these formulas we derive a systematic say of synthesizing controls to achieve desired motion.As our main tool we derive averaging theory for left-invariant systems on finite-dimensional Lie groups. This theory provides basis- independent formulas which approximate system behavior on the Lie group to arbitrarily high order in given small () amplitude, periodically time-varying control inputs. We interpret the average formulas geometrically and exploit this interpretation to prove a constructive controllability theorem for the average system. The proof of this theorem provides a constructive control synthesis methodology for drift-free systems which we use to derive algorithms which synthesize sinusoidal open-loop controls. We apply the algorithms to several under-actuated mechanical control problems including problems in spacecraft attitude control, unicycle motion control and autonomous underwater vehicle control. We illustrate the effectiveness of the synthesized controls by simulation and experimentation. We show further that as a consequence of the geometry inherited from the average formulas, our algorithms can be used to produce motion controls that adapt to changes in control authority such as loss of an actuator.
We also apply our theory to synthesize controls for bilinear control systems on Rn possibly with drift. Our approach is to control the system state by controlling the state transition matrix which evolves on a matrix Lie group. We design and demonstrate a controller for an example system with drift, a simple switched electrical network.
Item Motion Control of Drift-Free, Left-Invariant Systems on Lie Groups, Part II: A General Constructive Control Algorithm(1994) Leonard, Naomi E.; Krishnaprasad, Perinkulam S.; ISRIn this paper we present a general algorithm for constructing open-loop controls to solve the complete constructive controllability problem for drift-free invariant systems on Lie groups that satisfy the Lie algebra controllability rank condition with up to ( p - 1) iterations of Lie brackets, p = 1,2,3. Specifically, given only the structure constants of the given system, an initial condition Xi, a final condition Xf and a final time tf, the algorithm specifies open-loop, small (e) amplitude sinusoidal controls such that the system starting from Xi, reaches Xf at t = tf, with O (ep) accuracy. The algorithm is based on the formulas and geometric interpretation of the average approximations to the solution given in Part I to this paper. To illustrate the effectiveness of the algorithms, we apply it to three problems: the spacecraft attitude control problem with only two controls available, the unicycle motion planning problem and the autonomous underwater vehicle motion control problem with only three controls available.Item Motion Control of Drift-Free, Left-Invariant Systems on Lie Groups(1994) Leonard, Naomi E.; Krishnaprasad, Perinkulam S.; ISRIn this paper we address the constructive controllability problem for drift free, left-invariant systems on finite-dimensional Lie groups with fewer controls than state dimension. We consider small (e) amplitude, low-frequency, periodically time-varying controls and derive average solutions for system behavior. We show how the pth-order average formula can be used to construct open-loop controls for point-to-point maneuvering of systems that require up to ( p - 1) iterations of Lie brackets to satisfy the Lie algebra controllability rank condition. In the cases p =2,3, we give algorithms for constructing these controls as a function of structure constants that define the control authority, i.e., the actuator capability, of the system. The algorithms are based on a geometric interpretation of the average formulas and produce sinusoidal controls that solve the constructive controllability problem with O (ep) accuracy in general (exactly if the Lie algebra is nipotent). The methodology is applicable to a variety of control problems and is illustrated for the motion control problem of an autonomous underwater vehicle with as few as three control inputs.Item High-Order Averaging on Lie Groups and Control of an Autonomous Underwater Vehicle(1993) Leonard, Naomi E.; Krishnaprasad, Perinkulam S.; ISRIn this paper we extend our earlier results on the use of periodic forcing and averaging to solve the constructive controllability problem for drift-free left-invariant systems on Lie groups with fewer controls than state variables. In particular, we prove a third-order averaging theorem applicable to systems evolving on general matrix Lie groups and show how to use the resulting approximations to construct open loop controls for complete controllability of systems that require up to depth- two Lie brackets to satisfy the Lie algebra controllability rank condition. The motion control problem for an autonomous underwater vehicle is modeled as a drift-free left-invariant system on the matrix Lie group SE (3). In the general case, when only one translational and two angular control inputs are available, this system satisfies the controllability rank condition using depth-two Lie brackets. We use the third-order averaging result and its geometric interpretation to construct open loop controls to arbitrarily translate and orient an autonomous underwater vehicle.