Motion Control of Drift-Free, Left-Invariant Systems on Lie Groups
Files
Publication or External Link
Date
Advisor
Citation
DRUM DOI
Abstract
In this paper we address the constructive controllability problem for drift free, left-invariant systems on finite-dimensional Lie groups with fewer controls than state dimension. We consider small (e) amplitude, low-frequency, periodically time-varying controls and derive average solutions for system behavior. We show how the pth-order average formula can be used to construct open-loop controls for point-to-point maneuvering of systems that require up to ( p - 1) iterations of Lie brackets to satisfy the Lie algebra controllability rank condition. In the cases p =2,3, we give algorithms for constructing these controls as a function of structure constants that define the control authority, i.e., the actuator capability, of the system. The algorithms are based on a geometric interpretation of the average formulas and produce sinusoidal controls that solve the constructive controllability problem with O (ep) accuracy in general (exactly if the Lie algebra is nipotent). The methodology is applicable to a variety of control problems and is illustrated for the motion control problem of an autonomous underwater vehicle with as few as three control inputs.