Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Characterization of Indentation Impressions on Human Enamel For Hardness Measurement
    (1997) Zhang, G.; Le, Dung T.; Tucker, S.R.; Ng, S.J.; ISR
    This paper presents results from investigating indentation impressions on human enamel under micro-hardness tests. The experiments of hardness testing were performed on a microhardness indentation machine under different loading conditions. Images of indentation impressions were obtained using an environmental scanning electron microscope. Geometrical shapes of hardness indentations were visualized in three-dimensional space using computer graphics. Quantitative information was obtained through atomic force measurements to characterize "pile-up", "sink-in", and elastic recovery of enamel. Special efforts have been made to study the microstrucutual effect of the calcified rods orientations on the fracture patterns formed during the hardness tests. Significant findings include that the occlusal surface demonstrates much stronger resistance to the indentation force than does the buccal surface and shows 40% elastic recovery after indentation. A new formula to determine hardness value has been proposed. By incorporating the reversible deformation into the evluation, a normalized hardness measurement can be made to form a basis for comparison and other investigations where hardness has its unique role to play.

  • Item
    Characterization of the Surface Cracking Formed during the Machining of Ceramic Material
    (1995) Zhang, G.M.; Ng, S.; Le, Dung T.; ISR
    This paper presents a method to characterize the surface cracking formed during the machining of ceramics material. Ceramic specimens are prepared under two different machining environments, dry and submersion. An environmental scanning electron microscope is used to obtain high-magnification images of machined surfaces. Reconstruction of the surface texture in a three-dimensional space is made by scanning the images and using graphics software to obtain detailed and informative spatial views of the machined surface. The visualized surface cracks provide quantitative information on their size and shape. Two performance indices are proposed to characterize the distribution of surface cracks induced by machining in terms of the density and crack depth with reference to the machined surface. As a case study, the developed nondestructive evaluation method is used to assess the effectiveness of using the submerged machining to process ceramic material. The obtained results present a clear picture illustrating the capability of controlling the crack formation during the submerged machining.