Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies
    (1999) Newman, Andrew J.; Krishnaprasad, Perinkulam S.; Krishnaprasad, Perinkulam S.; ISR; CDCSS
    This report details the objectives, methodologies, and results for Phase II ofthe project, "Modeling and Optimization for Epitaxial Growth"(see~cite{NKPB98} for Phase I report). This project is a joint effort betweenthe Institute for Systems Research (ISR) and Northrop Grumman'sElectronic Sensors and Systems Sector (ESSS), Baltimore, MD.

    The overallobjective is to improve manufacturing effectiveness for epitaxial growth ofsilicon and silicon-germanium (Si-Ge) thin films on a silicon wafer. Growthtakes place in the ASM Epsilon-1 chemical vapor deposition (CVD) reactor, aproduction tool currently in use at ESSS. Phase II project results includedevelopment of a new comprehensive process-equipment model capable ofpredicting gas flow, heat transfer, species transport, and chemical mechanismsin the reactor under a variety of process conditions and equipment settings.

    Applications of the model include prediction and control of deposition rate andthickness uniformity; studying sensitivity of deposition rate to processsettings such as temperature, pressure, and flow rates; and reducing the use ofconsumables via purge flow optimization. The implications of varioussimulation results are discussed in terms of how they can be used to reducecosts and improve product quality, e.g., thickness uniformity of thin films. We demonstrate that achieving deposition uniformity requires some degree oftemperature non-uniformity to compensate for the effects of other phenomenasuch as reactant depletion, gas heating and gas phase reactions, thermaldiffusion of species, and flow patterns.

  • Thumbnail Image
    Item
    Modeling and Model Reduction for Control and Optimization of Epitaxial Growth in a Commercial Rapid Thermal Chemical Vapor Deposition Reactor
    (1998) Newman, Andrew J.; Krishnaprasad, Perinkulam S.; Ponczak, Sam; Brabant, Paul; Krishnaprasad, Perinkulam S.; ISR
    In December 1996, a project was initiated at the Institute for Systems Research (ISR), under an agreement between Northrop GrummanElectronic Sensors and Systems Division (ESSD) and the ISR, to investigatethe epitaxial growth of silicon-germanium (Si-Ge) heterostructures in a commercial rapid thermal chemical vapor deposition (RTCVD) reactor. This report provides a detailed account of the objectives and results of work done on this project as of September 1997. The report covers two maintopics: modeling and model reduction. Physics-based models are developedfor thermal, fluid, and chemical mechanisms involved in epitaxial growth.Experimental work for model validation and determination of growth parameters is described. Due to the complexity and high computational demands of the models, we investigate the use of model reduction techniques to reduce the model complexity, leading to faster simulation and facilitating the use of standard control and optimization strategies.