Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Convergence Analysis and Analog Circuit Applications for a Class of Networks of Nonlinear Coupled Oscillators
    (1996) Justh, Eric W.; Krishnaprasad, Perinkulam S.; Kub, Francis J.; ISR
    The physical motivation and rigorous proof of convergence for a particular network of nonlinear coupled oscillators are reviewed. Next, the network and convergence proof are generalized in several ways, to make the network more applicable to actual engineering problems. It is argued that such coupled oscillator circuits are more natural to implement in analog hardware than other types of dynamical equations because the signal levels tend to remain at sufficiently large values that effects of offsets and mismatch are minimized. Examples of how analog implementations of these networks are able to address actual control problems are given. The first example shows how a pair of coupled oscillators can be used to compensate for the feedback path phase shift in a complex LMS loop, and has potential application for analog adaptive antenna arrays or linear predictor circuits. The second example shows how a single oscillator circuit with feedback could be used for continuous wavelet transform applications. Finally, analog CMOS implementation of the coupled oscillator dynamics is briefly discussed.
  • Thumbnail Image
    Item
    Adaptive Friction Compensation for Bi-Directional Low-Velocity Position Tracking
    (1992) Leonard, Naomi E.; Krishnaprasad, Perinkulam S.; ISR
    This paper presents a comparative investigation of friction- compensating control strategies designed to improve low-velocity position tracking performance in the presence of velocity reversals for servomechanisms. The methods considered include adaptive control and estimation-based control. Additionally, the various controller designs incorporate different friction models ranging from classical friction and Stribeck friction to the less popular Dahl friction model. This investigation of friction models is motivated by the fact that there is little consensus in the literature on how best to model friction for dynamic friction compensation. the control strategies are compared in an extensive test program involving sinusoidal position trajectory tracking experiments on a direct-drive dc motor. We focus attention on comparative experimental results of friction compensation especially with repeated velocity reversals. The results show that the adaptive experiments also yield insight into the appropriateness of the different friction models under the tested operating conditions. In particular, the Dahl model, typically ignored in the literature proves to be significant for the firction-compensating control problem with repeated zero- velocity crossings.
  • Thumbnail Image
    Item
    Comparative Study of Friction-Compensating Control Strategies for Servomechanisms
    (1991) Leonard, Naomi E.; Krishnaprasad, Perinkulam S.; ISR
    This paper describes a comparative investigation of friction- compensating control strategies designed to improve low-velocity position tracking performance for servomechanisms. Several control methods are considered including adaptive control and estimation-based control. Additionally, the various controller designs incorporate different friction models ranging from classical friction and Stribeck friction to the less popular Dahl friction model. This investigation of friction models is motivated by the fact that there is little consensus in the literature on how best to model friction for dynamic friction compensation. The control strategies are compared in an extensive test program involving position tracking experiments on a direct- drive de motor. This effort addresses the current lack of comparative experimental results on friction compensation. The results show that the adaptive and estimation-based controllers outperform more traditional linear controllers. The experiments also yield insight into the appropriateness of the different friction models under the tested operating conditions. In particular, the Dahl model is observed to provide a reliable representation of friction behavior near zero velocity.