Adaptive Friction Compensation for Bi-Directional Low-Velocity Position Tracking

Loading...
Thumbnail Image

Files

TR_92-91.pdf (1.21 MB)
No. of downloads: 684

Publication or External Link

Date

1992

Advisor

Citation

DRUM DOI

Abstract

This paper presents a comparative investigation of friction- compensating control strategies designed to improve low-velocity position tracking performance in the presence of velocity reversals for servomechanisms. The methods considered include adaptive control and estimation-based control. Additionally, the various controller designs incorporate different friction models ranging from classical friction and Stribeck friction to the less popular Dahl friction model. This investigation of friction models is motivated by the fact that there is little consensus in the literature on how best to model friction for dynamic friction compensation. the control strategies are compared in an extensive test program involving sinusoidal position trajectory tracking experiments on a direct-drive dc motor. We focus attention on comparative experimental results of friction compensation especially with repeated velocity reversals. The results show that the adaptive experiments also yield insight into the appropriateness of the different friction models under the tested operating conditions. In particular, the Dahl model, typically ignored in the literature proves to be significant for the firction-compensating control problem with repeated zero- velocity crossings.

Notes

Rights